BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34698637)

  • 1. Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex.
    Kumar A; Barkai E; Schiller J
    Elife; 2021 Oct; 10():. PubMed ID: 34698637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA spikes mediate amplification of inputs in the rat piriform cortex.
    Kumar A; Schiff O; Barkai E; Mel BW; Poleg-Polsky A; Schiller J
    Elife; 2018 Dec; 7():. PubMed ID: 30575520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex.
    Russo MJ; Franks KM; Oghaz R; Axel R; Siegelbaum SA
    J Neurosci; 2020 Dec; 40(49):9414-9425. PubMed ID: 33115926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In the Piriform Cortex, the Primary Impetus for Information Encoding through Synaptic Plasticity Is Provided by Descending Rather than Ascending Olfactory Inputs.
    Strauch C; Manahan-Vaughan D
    Cereb Cortex; 2018 Feb; 28(2):764-776. PubMed ID: 29186359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
    Letzkus JJ; Kampa BM; Stuart GJ
    J Neurosci; 2006 Oct; 26(41):10420-9. PubMed ID: 17035526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity.
    Kampa BM; Letzkus JJ; Stuart GJ
    J Physiol; 2006 Jul; 574(Pt 1):283-90. PubMed ID: 16675489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons.
    Magó Á; Weber JP; Ujfalussy BB; Makara JK
    J Neurosci; 2020 Mar; 40(13):2593-2605. PubMed ID: 32047054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population Coding in an Innately Relevant Olfactory Area.
    Iurilli G; Datta SR
    Neuron; 2017 Mar; 93(5):1180-1197.e7. PubMed ID: 28238549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup.
    Morrison GL; Fontaine CJ; Harley CW; Yuan Q
    J Neurophysiol; 2013 Jul; 110(1):141-52. PubMed ID: 23576704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological manipulation of the olfactory bulb modulates beta oscillations: testing model predictions.
    Osinski BL; Kim A; Xiao W; Mehta NM; Kay LM
    J Neurophysiol; 2018 Sep; 120(3):1090-1106. PubMed ID: 29847235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells.
    Brandalise F; Carta S; Helmchen F; Lisman J; Gerber U
    Nat Commun; 2016 Nov; 7():13480. PubMed ID: 27848967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex.
    Osmanski BF; Martin C; Montaldo G; Lanièce P; Pain F; Tanter M; Gurden H
    Neuroimage; 2014 Jul; 95():176-84. PubMed ID: 24675645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common properties between synaptic plasticity in the main olfactory bulb and olfactory learning in young rats.
    Zhang JJ; Okutani F; Huang GZ; Taniguchi M; Murata Y; Kaba H
    Neuroscience; 2010 Sep; 170(1):259-67. PubMed ID: 20558253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2017 Dec; 37(49):11774-11788. PubMed ID: 29066560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning.
    Devore S; de Almeida L; Linster C
    J Neurosci; 2014 Aug; 34(34):11244-60. PubMed ID: 25143606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex.
    Kapur A; Lytton WW; Ketchum KL; Haberly LB
    J Neurophysiol; 1997 Nov; 78(5):2546-59. PubMed ID: 9356404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.