These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34698863)

  • 1. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance.
    Crawford JD; Cousins AB
    J Exp Bot; 2022 Jan; 73(3):927-938. PubMed ID: 34698863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis.
    Osborn HL; Alonso-Cantabrana H; Sharwood RE; Covshoff S; Evans JR; Furbank RT; von Caemmerer S
    J Exp Bot; 2017 Jan; 68(2):299-310. PubMed ID: 27702996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesophyll conductance in Zea mays responds transiently to CO
    Kolbe AR; Cousins AB
    New Phytol; 2018 Mar; 217(4):1463-1474. PubMed ID: 29220090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of leaf carbonic anhydrase activity eliminates the C
    DiMario RJ; Giuliani R; Ubierna N; Slack AD; Cousins AB; Studer AJ
    Plant Cell Environ; 2022 May; 45(5):1382-1397. PubMed ID: 35233800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesophyll conductance response to short-term changes in pCO
    Pathare VS; DiMario RJ; Koteyeva N; Cousins AB
    New Phytol; 2022 Nov; 236(4):1281-1295. PubMed ID: 35959528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low CO2-responsive mutant of Setaria viridis reveals that reduced carbonic anhydrase limits C4 photosynthesis.
    Chatterjee J; Coe RA; Acebron K; Thakur V; Yennamalli RM; Danila F; Lin HC; Balahadia CP; Bagunu E; Padhma PPOS; Bala S; Yin X; Rizal G; Dionora J; Furbank RT; von Caemmerer S; Quick WP
    J Exp Bot; 2021 Apr; 72(8):3122-3136. PubMed ID: 33528493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The response of mesophyll conductance to short-term variation in CO2 in the C4 plants Setaria viridis and Zea mays.
    Ubierna N; Gandin A; Cousins AB
    J Exp Bot; 2018 Feb; 69(5):1159-1170. PubMed ID: 29474683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO
    Kolbe AR; Studer AJ; Cornejo OE; Cousins AB
    BMC Genomics; 2019 Feb; 20(1):138. PubMed ID: 30767781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis.
    Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2006 May; 141(1):232-42. PubMed ID: 16543411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.
    Boyd RA; Gandin A; Cousins AB
    Plant Physiol; 2015 Nov; 169(3):1850-61. PubMed ID: 26373659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold acclimation of mesophyll conductance, bundle-sheath conductance and leakiness in Miscanthus × giganteus.
    Serrano-Romero EA; Cousins AB
    New Phytol; 2020 Jun; 226(6):1594-1606. PubMed ID: 32112409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.
    Retta M; Ho QT; Yin X; Verboven P; Berghuijs HNC; Struik PC; Nicolaï BM
    Plant Sci; 2016 May; 246():37-51. PubMed ID: 26993234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Mesophyll Conductance from Measurements of C
    Ogée J; Wingate L; Genty B
    Plant Physiol; 2018 Oct; 178(2):728-752. PubMed ID: 30104255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion of CO
    Alonso-Cantabrana H; Cousins AB; Danila F; Ryan T; Sharwood RE; von Caemmerer S; Furbank RT
    Plant Physiol; 2018 Sep; 178(1):72-81. PubMed ID: 30018172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainties and limitations of using carbon-13 and oxygen-18 leaf isotope exchange to estimate the temperature response of mesophyll CO
    Sonawane BV; Cousins AB
    New Phytol; 2019 Apr; 222(1):122-131. PubMed ID: 30394538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis.
    Momayyezi M; McKown AD; Bell SCS; Guy RD
    Plant J; 2020 Feb; 101(4):831-844. PubMed ID: 31816145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic variation in grass phosphoenolpyruvate carboxylases provides opportunity to enhance C
    DiMario RJ; Kophs AN; Pathare VS; Schnable JC; Cousins AB
    Plant J; 2021 Mar; 105(6):1677-1688. PubMed ID: 33345397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in leaf anatomy determines temperature response of leaf hydraulic and mesophyll CO
    Sonawane BV; Koteyeva NK; Johnson DM; Cousins AB
    New Phytol; 2021 Jun; 230(5):1802-1814. PubMed ID: 33605441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic maize phosphoenolpyruvate carboxylase alters leaf-atmosphere CO
    Giuliani R; Karki S; Covshoff S; Lin HC; Coe RA; Koteyeva NK; Evans MA; Quick WP; von Caemmerer S; Furbank RT; Hibberd JM; Edwards GE; Cousins AB
    Photosynth Res; 2019 Nov; 142(2):153-167. PubMed ID: 31325077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a CO
    Ermakova M; Osborn H; Groszmann M; Bala S; Bowerman A; McGaughey S; Byrt C; Alonso-Cantabrana H; Tyerman S; Furbank RT; Sharwood RE; von Caemmerer S
    Elife; 2021 Nov; 10():. PubMed ID: 34842138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.