These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34699236)

  • 21. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.
    Preston DJ; Lu Z; Song Y; Zhao Y; Wilke KL; Antao DS; Louis M; Wang EN
    Sci Rep; 2018 Jan; 8(1):540. PubMed ID: 29323200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y; Yang X; Wang L; Li Y; Zhu D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.
    Xiao R; Miljkovic N; Enright R; Wang EN
    Sci Rep; 2013; 3():1988. PubMed ID: 23759735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directional pumping of water and oil microdroplets on slippery surface.
    Jiang J; Gao J; Zhang H; He W; Zhang J; Daniel D; Yao X
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2482-2487. PubMed ID: 30692246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: The Extent of Lubricant Miscibility.
    Sett S; Oh J; Cha H; Veriotti T; Bruno A; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2021 May; 13(19):23121-23133. PubMed ID: 33949848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steam condensation heat transfer on lubricant-infused surfaces.
    Stoddard R; Nithyanandam K; Pitchumani R
    iScience; 2021 Apr; 24(4):102336. PubMed ID: 33889827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid and Persistent Suction Condensation on Hydrophilic Surfaces for High-Efficiency Water Collection.
    Cheng Y; Wang M; Sun J; Liu M; Du B; Liu Y; Jin Y; Wen R; Lan Z; Zhou X; Ma X; Wang Z
    Nano Lett; 2021 Sep; 21(17):7411-7418. PubMed ID: 34176267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities.
    Feldmann D; Pinchasik BE
    J Colloid Interface Sci; 2023 Aug; 644():146-156. PubMed ID: 37105038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust Micro-Nanostructured Superhydrophobic Surfaces for Long-Term Dropwise Condensation.
    Tang Y; Yang X; Li Y; Lu Y; Zhu D
    Nano Lett; 2021 Nov; 21(22):9824-9833. PubMed ID: 34472863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
    Wang X; Xu B; Chen Z; Del Col D; Li D; Zhang L; Mou X; Liu Q; Yang Y; Cao Q
    Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fundamental Limits of the Spatial Control of Heterogeneous Nucleation on Biphilic Surfaces.
    Kim MK; Sett S; Hoque MJ; Kim E; Ahn J; Miljkovic N
    Langmuir; 2024 Aug; 40(33):17767-17778. PubMed ID: 39119907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.
    Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T
    Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile Fabrication of Slippery Lubricant-Infused CuO-Coated Surfaces with Different Morphologies for Efficient Water Collection and Excellent Slippery Stability.
    Gou X; Guo Z
    Langmuir; 2020 Aug; 36(30):8983-8992. PubMed ID: 32663019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF; Gross U; Wang XD
    Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life Span of Slippery Lubricant Infused Surfaces.
    Hoque MJ; Sett S; Yan X; Liu D; Rabbi KF; Qiu H; Qureshi M; Barac G; Bolton L; Miljkovic N
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4598-4611. PubMed ID: 35018774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.
    Rykaczewski K
    Langmuir; 2012 May; 28(20):7720-9. PubMed ID: 22548441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation.
    Wang R; Wu F; Xing D; Yu F; Gao X
    ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.