These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34699349)

  • 1. Iteratively Reweighted Minimax-Concave Penalty Minimization for Accurate Low-rank Plus Sparse Matrix Decomposition.
    Pokala PK; Hemadri RV; Seelamantula CS
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):8992-9010. PubMed ID: 34699349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. l
    Brbic M; Kopriva I
    IEEE Trans Cybern; 2020 Apr; 50(4):1711-1725. PubMed ID: 30561362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm.
    Lu C; Tang J; Yan S; Lin Z
    IEEE Trans Image Process; 2016 Feb; 25(2):829-39. PubMed ID: 26841392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised Learning for Salient Object Detection via Minimization of Bilinear Factor Matrix Norm.
    Li M; Zhang Y; Xiao M; Zhang W; Sun X
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; 34(3):1354-1366. PubMed ID: 34460389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Rank Matrix Recovery via Modified Schatten-p Norm Minimization with Convergence Guarantees.
    Zhang H; Qian J; Zhang B; Yang J; Gong C; Wei Y
    IEEE Trans Image Process; 2019 Dec; ():. PubMed ID: 31831418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition.
    Xie T; Li S; Sun B
    IEEE Trans Image Process; 2020; 29():44-56. PubMed ID: 31329555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient matrix bi-factorization alternative optimization method for low-rank matrix recovery and completion.
    Liu Y; Jiao LC; Shang F; Yin F; Liu F
    Neural Netw; 2013 Dec; 48():8-18. PubMed ID: 23891807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Rank Approximation via Generalized Reweighted Iterative Nuclear and Frobenius Norms.
    Huang Y; Liao G; Xiang Y; Zhang L; Li J; Nehorai A
    IEEE Trans Image Process; 2019 Oct; ():. PubMed ID: 31675328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Selection With $\ell_{2,1-2}$ Regularization.
    Yong Shi ; Jianyu Miao ; Zhengyu Wang ; Peng Zhang ; Lingfeng Niu
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4967-4982. PubMed ID: 29994757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Benchmark for Sparse Coding: When Group Sparsity Meets Rank Minimization.
    Zha Z; Yuan X; Wen B; Zhou J; Zhang J; Zhu C
    IEEE Trans Image Process; 2020 Mar; ():. PubMed ID: 32167891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast and Accurate Matrix Completion Method Based on QR Decomposition and L
    Liu Q; Davoine F; Yang J; Cui Y; Jin Z; Han F
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):803-817. PubMed ID: 30047909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and accurate matrix completion via truncated nuclear norm regularization.
    Hu Y; Zhang D; Ye J; Li X; He X
    IEEE Trans Pattern Anal Mach Intell; 2013 Sep; 35(9):2117-30. PubMed ID: 23868774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Recovery of Low-Rank Matrix via Double Nonconvex Nonsmooth Rank Minimization.
    Zhang H; Gong C; Qian J; Zhang B; Xu C; Yang J
    IEEE Trans Neural Netw Learn Syst; 2019 Oct; 30(10):2916-2925. PubMed ID: 30892254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Group Sparse Regularized Nonconvex Regression for Face Recognition.
    Zhang C; Li H; Chen C; Qian Y; Zhou X
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2438-2452. PubMed ID: 33108280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient ℓ
    Li X; Xie S; Zeng D; Wang Y
    Stat Med; 2018 Feb; 37(3):473-486. PubMed ID: 29082539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Low-Rank Tensor Recovery via Nonconvex Singular Value Minimization.
    Chen L; Jiang X; Liu X; Zhou Z
    IEEE Trans Image Process; 2020 Sep; PP():. PubMed ID: 32946392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovering low-rank and sparse matrix based on the truncated nuclear norm.
    Cao F; Chen J; Ye H; Zhao J; Zhou Z
    Neural Netw; 2017 Jan; 85():10-20. PubMed ID: 27814461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximal iteratively reweighted algorithm for low-rank matrix recovery.
    Ma CQ; Ren YS
    J Inequal Appl; 2018; 2018(1):12. PubMed ID: 29367824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization.
    Lu C; Lin Z; Yan S
    IEEE Trans Image Process; 2015 Feb; 24(2):646-54. PubMed ID: 25531948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic MRI Reconstruction via Weighted Tensor Nuclear Norm Regularizer.
    Cui K
    IEEE J Biomed Health Inform; 2021 Aug; 25(8):3052-3060. PubMed ID: 33625992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.