BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34699726)

  • 1. Bringing Electrochemical Three-Dimensional Printing to the Nanoscale.
    Hengsteler J; Mandal B; van Nisselroy C; Lau GPS; Schlotter T; Zambelli T; Momotenko D
    Nano Lett; 2021 Nov; 21(21):9093-9101. PubMed ID: 34699726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing.
    Hengsteler J; Kanes KA; Khasanova L; Momotenko D
    Annu Rev Anal Chem (Palo Alto Calif); 2023 Jun; 16(1):71-91. PubMed ID: 37068744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles.
    Rocha RG; Cardoso RM; Zambiazi PJ; Castro SVF; Ferraz TVB; Aparecido GO; Bonacin JA; Munoz RAA; Richter EM
    Anal Chim Acta; 2020 Oct; 1132():1-9. PubMed ID: 32980098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesized biocompatible and conductive ink for 3D printing of flexible electronics.
    Kazemzadeh Farizhandi AA; Khalajabadi SZ; Krishnadoss V; Noshadi I
    J Mech Behav Biomed Mater; 2020 Oct; 110():103960. PubMed ID: 32957251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL).
    Wang Y; Li X; Fan S; Feng X; Cao K; Ge Q; Gao L; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8901-8908. PubMed ID: 33587597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer.
    Iffelsberger C; Jellett CW; Pumera M
    Small; 2021 Jun; 17(24):e2101233. PubMed ID: 33938128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remotely Controlled in Situ Growth of Silver Microwires Forming Bioelectronic Interfaces.
    Sanjuan-Alberte P; Saleh E; Shaw AJ; Lacalendola N; Willmott G; Vaithilingam J; Alexander MR; Hague RJM; Rawson FJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8928-8936. PubMed ID: 30735349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed electronics with nanomaterials.
    Słoma M
    Nanoscale; 2023 Mar; 15(12):5623-5648. PubMed ID: 36880539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Additive-Free 2D Ti
    Orangi J; Hamade F; Davis VA; Beidaghi M
    ACS Nano; 2020 Jan; 14(1):640-650. PubMed ID: 31891247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for deposition of conductive oxides onto 3D-printed materials for electronic device applications.
    Huddy JE; Scheideler WJ
    STAR Protoc; 2022 Sep; 3(3):101523. PubMed ID: 35779258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printing of Highly Conductive Carbon Nanotube Microarchitectures with Fluid Ink.
    Kim JH; Lee S; Wajahat M; Jeong H; Chang WS; Jeong HJ; Yang JR; Kim JT; Seol SK
    ACS Nano; 2016 Sep; 10(9):8879-87. PubMed ID: 27564233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal Materials for 3D Printing.
    Zhu C; Pascall AJ; Dudukovic N; Worsley MA; Kuntz JD; Duoss EB; Spadaccini CM
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():17-42. PubMed ID: 30951639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MXene Printing and Patterned Coating for Device Applications.
    Zhang YZ; Wang Y; Jiang Q; El-Demellawi JK; Kim H; Alshareef HN
    Adv Mater; 2020 May; 32(21):e1908486. PubMed ID: 32239560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive-manufactured (3D-printed) electrochemical sensors: A critical review.
    Cardoso RM; Kalinke C; Rocha RG; Dos Santos PL; Rocha DP; Oliveira PR; Janegitz BC; Bonacin JA; Richter EM; Munoz RAA
    Anal Chim Acta; 2020 Jun; 1118():73-91. PubMed ID: 32418606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional nanoprinting via charged aerosol jets.
    Jung W; Jung YH; Pikhitsa PV; Feng J; Yang Y; Kim M; Tsai HY; Tanaka T; Shin J; Kim KY; Choi H; Rho J; Choi M
    Nature; 2021 Apr; 592(7852):54-59. PubMed ID: 33790446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.