BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34699726)

  • 21. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Write-Read 3D Patterning with a Dual-Channel Nanopipette.
    Momotenko D; Page A; Adobes-Vidal M; Unwin PR
    ACS Nano; 2016 Sep; 10(9):8871-8. PubMed ID: 27569272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Template-Free 3D Microprinting of Metals Using a Force-Controlled Nanopipette for Layer-by-Layer Electrodeposition.
    Hirt L; Ihle S; Pan Z; Dorwling-Carter L; Reiser A; Wheeler JM; Spolenak R; Vörös J; Zambelli T
    Adv Mater; 2016 Mar; 28(12):2311-5. PubMed ID: 26783090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research highlights: printing the future of microfabrication.
    Tseng P; Murray C; Kim D; Di Carlo D
    Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interconnect Fabrication by Electroless Plating on 3D-Printed Electroplated Patterns.
    Hossain Bhuiyan ME; Moreno S; Wang C; Minary-Jolandan M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19271-19281. PubMed ID: 33856182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Additive-free MXene inks and direct printing of micro-supercapacitors.
    Zhang CJ; McKeon L; Kremer MP; Park SH; Ronan O; Seral-Ascaso A; Barwich S; Coileáin CÓ; McEvoy N; Nerl HC; Anasori B; Coleman JN; Gogotsi Y; Nicolosi V
    Nat Commun; 2019 Apr; 10(1):1795. PubMed ID: 30996224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.
    Vaithilingam J; Simonelli M; Saleh E; Senin N; Wildman RD; Hague RJ; Leach RK; Tuck CJ
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6560-6570. PubMed ID: 28094997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted Additive Micromodulation of Grain Size in Nanocrystalline Copper Nanostructures by Electrohydrodynamic Redox 3D Printing.
    Menétrey M; Koch L; Sologubenko A; Gerstl S; Spolenak R; Reiser A
    Small; 2022 Dec; 18(51):e2205302. PubMed ID: 36328737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micro additive manufacturing of glucose biosensors: A feasibility study.
    Nesaei S; Song Y; Wang Y; Ruan X; Du D; Gozen A; Lin Y
    Anal Chim Acta; 2018 Dec; 1043():142-149. PubMed ID: 30392662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple, low-cost conductive composite material for 3D printing of electronic sensors.
    Leigh SJ; Bradley RJ; Purssell CP; Billson DR; Hutchins DA
    PLoS One; 2012; 7(11):e49365. PubMed ID: 23185319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum.
    Parate K; Rangnekar SV; Jing D; Mendivelso-Perez DL; Ding S; Secor EB; Smith EA; Hostetter JM; Hersam MC; Claussen JC
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8592-8603. PubMed ID: 32040290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D food printing: main components selection by considering rheological properties.
    Jiang H; Zheng L; Zou Y; Tong Z; Han S; Wang S
    Crit Rev Food Sci Nutr; 2019; 59(14):2335-2347. PubMed ID: 30285472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How 3D printing can boost advances in analytical and bioanalytical chemistry.
    Ambrosi A; Bonanni A
    Mikrochim Acta; 2021 Jul; 188(8):265. PubMed ID: 34287702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomedical Applications of Metal 3D Printing.
    Velásquez-García LF; Kornbluth Y
    Annu Rev Biomed Eng; 2021 Jul; 23():307-338. PubMed ID: 34255995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.
    Zhang B; He J; Li X; Xu F; Li D
    Nanoscale; 2016 Aug; 8(34):15376-88. PubMed ID: 27479715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications.
    Zips S; Grob L; Rinklin P; Terkan K; Adly NY; Weiß LJK; Mayer D; Wolfrum B
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32778-32786. PubMed ID: 31424902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct In- and Out-of-Plane Writing of Metals on Insulators by Electron-Beam-Enabled, Confined Electrodeposition with Submicrometer Feature Size.
    Nydegger M; Wang ZJ; Willinger MG; Spolenak R; Reiser A
    Small Methods; 2024 Jan; ():e2301247. PubMed ID: 38183406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.