These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34699761)

  • 1. Assessment of COVID-19 pandemic effects on ship pollutant emissions in major international seaports.
    Liu J; Law AW; Duru O
    Environ Res; 2021 Oct; ():112246. PubMed ID: 34699761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating greenhouse gas emissions from ships on four ports of Georgia from 2010 to 2018.
    Tokuslu A
    Environ Monit Assess; 2021 Jun; 193(7):385. PubMed ID: 34091785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of the COVID-19 epidemic on merchant ship activity and pollution emissions in Shanghai port waters.
    Shi K; Weng J
    Sci Total Environ; 2021 Oct; 790():148198. PubMed ID: 34098281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NOx Emissions Control Area (NECA) scenario for ports in the North Adriatic Sea.
    Topic T; Murphy AJ; Pazouki K; Norman R
    J Environ Manage; 2023 Oct; 344():118712. PubMed ID: 37573694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of shipping emissions on four ports of Portugal.
    Nunes RAO; Alvim-Ferraz MCM; Martins FG; Sousa SIV
    Environ Pollut; 2017 Dec; 231(Pt 2):1370-1379. PubMed ID: 28917818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea.
    Song SK; Shon ZH
    Environ Sci Pollut Res Int; 2014 May; 21(10):6612-22. PubMed ID: 24497306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the effectiveness of ECA policies in reducing pollutant emissions from merchant ships in Shanghai port waters.
    Shi K; Weng J; Li G
    Mar Pollut Bull; 2020 Jun; 155():111164. PubMed ID: 32310101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shipping emission inventories in China's Bohai Bay, Yangtze River Delta, and Pearl River Delta in 2018.
    Wan Z; Ji S; Liu Y; Zhang Q; Chen J; Wang Q
    Mar Pollut Bull; 2020 Feb; 151():110882. PubMed ID: 32056656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and measurement of SOx, CO
    Murcia González JC
    Environ Monit Assess; 2021 Jun; 193(6):374. PubMed ID: 34061261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Vessels' Air Pollutant Emissions Inventory and Emission Characteristics in the Xiamen Emission Control Area].
    Wang J; Huang Z; Liu YY; Chen SY; Wu YC; He YY; Yang XY
    Huan Jing Ke Xue; 2020 Aug; 41(8):3572-3580. PubMed ID: 33124330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of emission characteristics associated with vessel activities states in port waters.
    Gao X; Dai W; Yu Q
    Mar Pollut Bull; 2024 May; 202():116329. PubMed ID: 38581735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of emission control areas on atmospheric pollutant emissions from major ocean-going ships entering the Shanghai Port, China.
    Wan Z; Zhang Q; Xu Z; Chen J; Wang Q
    Mar Pollut Bull; 2019 May; 142():525-532. PubMed ID: 31232333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China.
    Zhao J; Zhang Y; Patton AP; Ma W; Kan H; Wu L; Fung F; Wang S; Ding D; Walker K
    Environ Pollut; 2020 Aug; 263(Pt A):114643. PubMed ID: 33618465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AIS-based operational phase identification using Progressive Ablation Feature Selection with machine learning for improving ship emission estimates.
    Duan K; Li Q; Liu S; Liu Y; Wang S; Li S; Wang X; Ma N; Ma Y
    J Air Waste Manag Assoc; 2024 Feb; 74(2):100-115. PubMed ID: 38215336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse changes in shipping emissions around the Western Pacific ports under the coeffect of the epidemic and fuel oil policy.
    Yuan Y; Zhang Y; Mao J; Yu G; Xu K; Zhao J; Qian H; Wu L; Yang X; Chen Y; Ma W
    Sci Total Environ; 2023 Jun; 879():162892. PubMed ID: 36934943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Emission Factors and Preliminary Emission Estimates of Air Pollutants from Ships at Berth in the Guangzhou Port].
    Huang XL; Zhang Z; Yang WQ; Li S; Zhu M; Fang H; He JJ; Chen JW; Wan CH; Zhang YL; Liu GG; Huang ZZ; Wang YJ; Wang XM
    Huan Jing Ke Xue; 2017 Aug; 38(8):3162-3168. PubMed ID: 29964922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of fuel switching on oceangoing vessels in the Gulf of Mexico.
    Browning L; Hartley S; Bandemehr A; Gathright K; Miller W
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1093-101. PubMed ID: 23019823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of atmospheric pollutant emissions with maritime energy strategies using bayesian simulations and time series forecasting.
    Liu J; Duru O; Law AW
    Environ Pollut; 2021 Feb; 270():116068. PubMed ID: 33288294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon footprints: Uncovering multilevel spatiotemporal changes of ship emissions during 2019-2021 in the U.S.
    Mou N; Zhang X; Yang T; Xu H; Zheng Y; Wang J; Niu J
    Sci Total Environ; 2024 Feb; 912():169395. PubMed ID: 38114030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of shipping emission factors through monitoring and modelling studies.
    Ekmekçioğlu A; Kuzu SL; Ünlügençoğlu K; Çelebi UB
    Sci Total Environ; 2020 Nov; 743():140742. PubMed ID: 32653717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.