BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34699825)

  • 1. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges.
    Su G; Ong HC; Fattah IMR; Ok YS; Jang JH; Wang CT
    Sci Total Environ; 2022 Feb; 809():151170. PubMed ID: 34699825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of waste oils for the production of biofuels: A critical review.
    Su G; Ong HC; Mofijur M; Mahlia TMI; Ok YS
    J Hazard Mater; 2022 Feb; 424(Pt B):127396. PubMed ID: 34673394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review.
    Singh R; Paritosh K; Pareek N; Vivekanand V
    Bioresour Technol; 2022 Sep; 360():127596. PubMed ID: 35809870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective.
    Su G; Ong HC; Gan YY; Chen WH; Chong CT; Ok YS
    Bioresour Technol; 2022 Jan; 344(Pt B):126096. PubMed ID: 34626763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor.
    Ly HV; Tran QK; Kim SS; Kim J; Choi SS; Oh C
    Environ Pollut; 2021 Apr; 275():116023. PubMed ID: 33582642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial role of biochar addition on the anaerobic digestion of food waste: A systematic and critical review of the operational parameters and mechanisms.
    Ambaye TG; Rene ER; Nizami AS; Dupont C; Vaccari M; van Hullebusch ED
    J Environ Manage; 2021 Jul; 290():112537. PubMed ID: 33865159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology.
    Neha S; Remya N
    J Environ Manage; 2021 Nov; 297():113345. PubMed ID: 34329909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products.
    Patra BR; Nanda S; Dalai AK; Meda V
    Chemosphere; 2021 Dec; 285():131431. PubMed ID: 34329143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2016 Dec; 221():645-655. PubMed ID: 27671343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic pyrolysis of food waste by microwave heating.
    Liu H; Ma X; Li L; Hu Z; Guo P; Jiang Y
    Bioresour Technol; 2014 Aug; 166():45-50. PubMed ID: 24905041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of oxygen vacancy defect on microwave pyrolysis of biomass to produce high-quality syngas and bio-oil: Microwave absorption and in-situ catalytic.
    Lin J; Sun S; Luo J; Cui C; Ma R; Fang L; Liu X
    Waste Manag; 2021 Jun; 128():200-210. PubMed ID: 34000690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of metal oxide catalyst on co-pyrolysis of biomass and COVID-19 waste.
    Tamilarasan N; Sakthivel R; Balaji K
    Environ Technol; 2024 Apr; 45(9):1721-1732. PubMed ID: 36537192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions.
    Park C; Lee N; Kim J; Lee J
    Environ Pollut; 2021 Feb; 270():116045. PubMed ID: 33257148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the management of household food waste and its engineering for sustainable valorization- A state-of-the-art review.
    Haldar D; Shabbirahmed AM; Singhania RR; Chen CW; Dong CD; Ponnusamy VK; Patel AK
    Bioresour Technol; 2022 Aug; 358():127390. PubMed ID: 35636679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris.
    Tang F; Yu Z; Li Y; Chen L; Ma X
    Bioresour Technol; 2020 Mar; 299():122636. PubMed ID: 31881438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges.
    Su G; Ong HC; Ibrahim S; Fattah IMR; Mofijur M; Chong CT
    Environ Pollut; 2021 Jun; 279():116934. PubMed ID: 33744627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design.
    Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR
    J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic digestion of food waste - Challenges and opportunities.
    Xu F; Li Y; Ge X; Yang L; Li Y
    Bioresour Technol; 2018 Jan; 247():1047-1058. PubMed ID: 28965912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.
    Kuppens T; Cornelissen T; Carleer R; Yperman J; Schreurs S; Jans M; Thewys T
    J Environ Manage; 2010 Dec; 91(12):2736-47. PubMed ID: 20724061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.