These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 34699861)
1. Connectomic mapping of brain-spinal cord neural networks: Future directions in assessing spinal cord injury at rest. Zhang L; Wang L; Xia H; Tan Y; Li C; Fang C Neurosci Res; 2022 Mar; 176():9-17. PubMed ID: 34699861 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Large-Scale Network Analysis Using Network-Based Statistic. Kaushal M; Oni-Orisan A; Chen G; Li W; Leschke J; Ward BD; Kalinosky B; Budde MD; Schmit BD; Li SJ; Muqeet V; Kurpad SN J Neurotrauma; 2017 Mar; 34(6):1278-1282. PubMed ID: 27937140 [TBL] [Abstract][Full Text] [Related]
3. Mapping the rest of the human connectome: Atlasing the spinal cord and peripheral nervous system. Irimia A; Van Horn JD Neuroimage; 2021 Jan; 225():117478. PubMed ID: 33160086 [TBL] [Abstract][Full Text] [Related]
4. Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain. Hawasli AH; Rutlin J; Roland JL; Murphy RKJ; Song SK; Leuthardt EC; Shimony JS; Ray WZ J Neurotrauma; 2018 Mar; 35(6):864-873. PubMed ID: 29179629 [TBL] [Abstract][Full Text] [Related]
5. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury. Hou J; Xiang Z; Yan R; Zhao M; Wu Y; Zhong J; Guo L; Li H; Wang J; Wu J; Sun T; Liu H Hum Brain Mapp; 2016 Jun; 37(6):2195-209. PubMed ID: 26936834 [TBL] [Abstract][Full Text] [Related]
6. Resting-State Functional Connectivity of the Thalamus in Complete Spinal Cord Injury. Karunakaran KD; Yuan R; He J; Zhao J; Cui JL; Zang YF; Zhang Z; Alvarez TL; Biswal BB Neurorehabil Neural Repair; 2020 Feb; 34(2):122-133. PubMed ID: 31904298 [No Abstract] [Full Text] [Related]
7. Functional networks in non-human primate spinal cord and the effects of injury. Sengupta A; Mishra A; Wang F; Li M; Yang PF; Chen LM; Gore JC Neuroimage; 2021 Oct; 240():118391. PubMed ID: 34271158 [TBL] [Abstract][Full Text] [Related]
8. Association Between Magnetic Resonance Imaging-Based Spinal Morphometry and Sensorimotor Behavior in a Hemicontusion Model of Incomplete Cervical Spinal Cord Injury in Rats. Chitturi J; Sanganahalli BG; Herman P; Hyder F; Ni L; Elkabes S; Heary R; Kannurpatti SS Brain Connect; 2020 Nov; 10(9):479-489. PubMed ID: 32981350 [No Abstract] [Full Text] [Related]
9. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia. Benavides FD; Jo HJ; Lundell H; Edgerton VR; Gerasimenko Y; Perez MA J Neurosci; 2020 Mar; 40(13):2633-2643. PubMed ID: 31996455 [TBL] [Abstract][Full Text] [Related]
10. Altered Topological Properties of Grey Matter Structural Covariance Networks in Complete Thoracic Spinal Cord Injury Patients: A Graph Theoretical Network Analysis. Wang WL; Li YL; Zheng MX; Hua XY; Wu JJ; Yang FF; Yang N; He X; Ao LJ; Xu JG Neural Plast; 2021; 2021():8815144. PubMed ID: 33603780 [TBL] [Abstract][Full Text] [Related]
11. Divergent Findings in Brain Reorganization After Spinal Cord Injury: A Review. Melo MC; Macedo DR; Soares AB J Neuroimaging; 2020 Jul; 30(4):410-427. PubMed ID: 32418286 [TBL] [Abstract][Full Text] [Related]
12. Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Matsubayashi K; Nagoshi N; Komaki Y; Kojima K; Shinozaki M; Tsuji O; Iwanami A; Ishihara R; Takata N; Matsumoto M; Mimura M; Okano H; Nakamura M Sci Rep; 2018 Sep; 8(1):14406. PubMed ID: 30258091 [TBL] [Abstract][Full Text] [Related]
13. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Hou JM; Sun TS; Xiang ZM; Zhang JZ; Zhang ZC; Zhao M; Zhong JF; Liu J; Zhang H; Liu HL; Yan RB; Li HT Neuroscience; 2014 Sep; 277():446-54. PubMed ID: 25086312 [TBL] [Abstract][Full Text] [Related]
14. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Freund P; Seif M; Weiskopf N; Friston K; Fehlings MG; Thompson AJ; Curt A Lancet Neurol; 2019 Dec; 18(12):1123-1135. PubMed ID: 31405713 [TBL] [Abstract][Full Text] [Related]
15. Impact of fractional amplitude of low-frequency fluctuations in motor- and sensory-related brain networks on spinal cord injury severity. Kim AR; Cha H; Kim E; Kim S; Lee HJ; Park E; Lee YS; Jung TD; Chang Y NMR Biomed; 2022 Jan; 35(1):e4612. PubMed ID: 34505321 [TBL] [Abstract][Full Text] [Related]
16. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study. Rao JS; Ma M; Zhao C; Zhang AF; Yang ZY; Liu Z; Li XG Magn Reson Imaging; 2014 Jun; 32(5):482-6. PubMed ID: 24629510 [TBL] [Abstract][Full Text] [Related]
17. Structural and resting state functional connectivity beyond the cortex. Harrison OK; Guell X; Klein-Flügge MC; Barry RL Neuroimage; 2021 Oct; 240():118379. PubMed ID: 34252527 [TBL] [Abstract][Full Text] [Related]
18. Atrophy and primary somatosensory cortical reorganization after unilateral thoracic spinal cord injury: a longitudinal functional magnetic resonance imaging study. Rao JS; Manxiu M; Zhao C; Xi Y; Yang ZY; Zuxiang L; Li XG Biomed Res Int; 2013; 2013():753061. PubMed ID: 24490171 [TBL] [Abstract][Full Text] [Related]
19. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Krupa P; Siddiqui AM; Grahn PJ; Islam R; Chen BK; Madigan NN; Windebank AJ; Lavrov IA Neuroscientist; 2022 Apr; 28(2):163-179. PubMed ID: 33089762 [TBL] [Abstract][Full Text] [Related]