These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34699890)

  • 1. Hierarchical crystallization strategy adaptive to 3-dimentional printing of polylactide matrix for complete stereo-complexation.
    Yang J; Li W; Mu B; Xu H; Hou X; Yang Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):247-257. PubMed ID: 34699890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous toughness and stiffness of 3D printed nano-reinforced polylactide matrix with complete stereo-complexation via hierarchical crystallinity and reactivity.
    Yang J; Li W; Mu B; Xu H; Hou X; Yang Y
    Int J Biol Macromol; 2022 Mar; 202():482-493. PubMed ID: 35051500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.
    Senatov FS; Niaza KV; Zadorozhnyy MY; Maksimkin AV; Kaloshkin SD; Estrin YZ
    J Mech Behav Biomed Mater; 2016 Apr; 57():139-48. PubMed ID: 26710259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications.
    Farto-Vaamonde X; Auriemma G; Aquino RP; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2019 Aug; 141():100-110. PubMed ID: 31112767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties.
    Ansari MAA; Jain PK; Nanda HS
    J Biomater Sci Polym Ed; 2023 Aug; 34(10):1408-1429. PubMed ID: 36628582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture.
    Li K; Wang D; Zhao K; Song K; Liang J
    Talanta; 2020 May; 211():120750. PubMed ID: 32070610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perimeter and carvacrol-loading regulate angiogenesis and biofilm growth in 3D printed PLA scaffolds.
    Farto-Vaamonde X; Diaz-Gomez L; Parga A; Otero A; Concheiro A; Alvarez-Lorenzo C
    J Control Release; 2022 Dec; 352():776-792. PubMed ID: 36336096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The key role of unique crystalline property in the hydrolytic degradation process of microcrystalline cellulose-reinforced stereo-complexed poly(lactic acid) composites.
    Cheng Z; Wang Q; Lei L; Zhao B; Yu T; Fan J; Li Y
    Int J Biol Macromol; 2024 Aug; 275(Pt 1):133656. PubMed ID: 38969048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Process for 3D Printing Decellularized Matrices.
    Gruber SMS; Ghosh P; Mueller KW; Whitlock PW; Lin CY
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application.
    Choi WJ; Hwang KS; Kwon HJ; Lee C; Kim CH; Kim TH; Heo SW; Kim JH; Lee JY
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110693. PubMed ID: 32204007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen.
    Teixeira BN; Aprile P; Mendonça RH; Kelly DJ; Thiré RMDSM
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):37-49. PubMed ID: 29480562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of stereo-complexation and interfacial compatibility in ammonium polyphosphate grafted polylactic acid fibers for simultaneously improved toughness and flame retardancy.
    Zheng S; Li W; Chen Y; Yang H; Cai Y; Wang Q; Wei Q
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129943. PubMed ID: 38311135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of 3D printed polylactide scaffolds with surface grafted hydrogel coatings.
    Kowalczyk P; Trzaskowska P; Łojszczyk I; Podgórski R; Ciach T
    Colloids Surf B Biointerfaces; 2019 Jul; 179():136-142. PubMed ID: 30954014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study.
    Bodnárová S; Gromošová S; Hudák R; Rosocha J; Živčák J; Plšíková J; Vojtko M; Tóth T; Harvanová D; Ižariková G; Danišovič Ľ
    Acta Bioeng Biomech; 2019; 21(4):101-110. PubMed ID: 32022801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.