BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34700043)

  • 1. Fluorine-containing bio-inert polymers: Roles of intermediate water.
    Koguchi R; Jankova K; Tanaka M
    Acta Biomater; 2022 Jan; 138():34-56. PubMed ID: 34700043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers.
    Koguchi R; Jankova K; Hayasaka Y; Kobayashi D; Amino Y; Miyajima T; Kobayashi S; Murakami D; Yamamoto K; Tanaka M
    ACS Biomater Sci Eng; 2020 May; 6(5):2855-2866. PubMed ID: 33463271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering the bio-inert properties of surfaces by fluorinated copolymers of mPEGMA.
    Koguchi R; Jankova K; Tanaka Y; Yamamoto A; Murakami D; Yang Q; Ameduri B; Tanaka M
    Biomater Adv; 2023 Oct; 153():213573. PubMed ID: 37562157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the Hydration Structure with a Small Amount of Fluorine To Produce Blood Compatible Fluorinated Poly(2-methoxyethyl acrylate).
    Koguchi R; Jankova K; Tanabe N; Amino Y; Hayasaka Y; Kobayashi D; Miyajima T; Yamamoto K; Tanaka M
    Biomacromolecules; 2019 Jun; 20(6):2265-2275. PubMed ID: 31042022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials.
    Tanaka M; Morita S; Hayashi T
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111449. PubMed ID: 33310639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers.
    Shiomoto S; Inoue K; Higuchi H; Nishimura SN; Takaba H; Tanaka M; Kobayashi M
    Biomacromolecules; 2022 Jul; 23(7):2999-3008. PubMed ID: 35736642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface.
    Tanaka M; Mochizuki A
    J Biomater Sci Polym Ed; 2010; 21(14):1849-63. PubMed ID: 20699056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the Feature of Intermediate Water in Hydrated Poly(ω-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement.
    Kuo AT; Sonoda T; Urata S; Koguchi R; Kobayashi S; Tanaka M
    ACS Biomater Sci Eng; 2020 Jul; 6(7):3915-3924. PubMed ID: 33463341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration structure of poly(2-methoxyethyl acrylate): comparison with a 2-methoxyethyl acetate model monomer.
    Morita S; Tanaka M; Kitagawa K; Ozaki Y
    J Biomater Sci Polym Ed; 2010; 21(14):1925-35. PubMed ID: 20566058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Relationship Between Water Structure and Blood Compatibility in Poly(2-methoxyethyl Acrylate) (PMEA) Analogues.
    Sato K; Kobayashi S; Kusakari M; Watahiki S; Oikawa M; Hoshiba T; Tanaka M
    Macromol Biosci; 2015 Sep; 15(9):1296-303. PubMed ID: 26017931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Study on the Water Mobility and Side-Chain Flexibility of Hydrated Poly(ω-methoxyalkyl acrylate)s.
    Kuo AT; Urata S; Koguchi R; Sonoda T; Kobayashi S; Tanaka M
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6690-6700. PubMed ID: 33320637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Side-Chain Spacing and Length on Hydration States of Poly(2-methoxyethyl acrylate) Analogues: A Molecular Dynamics Study.
    Kuo AT; Urata S; Koguchi R; Sonoda T; Kobayashi S; Tanaka M
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2383-2391. PubMed ID: 33979126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood compatibility of poly(propylene glycol diester) and its water structure observed by differential scanning calorimetry and
    Mochizuki A; Udagawa A; Miwa Y; Oda Y; Yoneyama K; Okuda C
    J Biomater Sci Polym Ed; 2024 Jun; 35(8):1258-1272. PubMed ID: 38457333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of interfacial water states on advanced biomedical material design.
    Nishida K; Anada T; Tanaka M
    Adv Drug Deliv Rev; 2022 Jul; 186():114310. PubMed ID: 35487283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water structure on blood compatibility--thermal analysis of water in poly(meth)acrylate.
    Tanaka M; Mochizuki A
    J Biomed Mater Res A; 2004 Mar; 68(4):684-95. PubMed ID: 14986323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water structure and blood compatibility of poly(tetrahydrofurfuryl acrylate).
    Mochizuki A; Hatakeyama T; Tomono Y; Tanaka M
    J Biomater Sci Polym Ed; 2009; 20(5-6):591-603. PubMed ID: 19323878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water structure of poly(2-methoxyethyl acrylate) observed by nuclear magnetic resonance spectroscopy.
    Mochizuki A; Miwa Y; Yahata C; Ono D; Oda Y; Kawaguchi T
    J Biomater Sci Polym Ed; 2020 Jun; 31(8):1024-1040. PubMed ID: 32131705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(tertiary amide acrylate) Copolymers Inspired by Poly(2-oxazoline)s: Their Blood Compatibility and Hydration States.
    Liu S; Kobayashi S; Sonoda T; Tanaka M
    Biomacromolecules; 2021 Jun; 22(6):2718-2728. PubMed ID: 34081446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ω-methoxyalkyl acrylate)s: Nonthrombogenic Polymer Family with Tunable Protein Adsorption.
    Kobayashi S; Wakui M; Iwata Y; Tanaka M
    Biomacromolecules; 2017 Dec; 18(12):4214-4223. PubMed ID: 29131605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.