These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34700221)

  • 1. Nanostructured gold electrodes promote neural maturation and network connectivity.
    Domínguez-Bajo A; Rosa JM; González-Mayorga A; Rodilla BL; Arché-Núñez A; Benayas E; Ocón P; Pérez L; Camarero J; Miranda R; González MT; Aguilar J; López-Dolado E; Serrano MC
    Biomaterials; 2021 Dec; 279():121186. PubMed ID: 34700221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features.
    Domínguez-Bajo A; Rodilla BL; Calaresu I; Arché-Núñez A; González-Mayorga A; Scaini D; Pérez L; Camarero J; Miranda R; López-Dolado E; González MT; Ballerini L; Serrano MC
    Adv Biosyst; 2020 Sep; 4(9):e2000117. PubMed ID: 32761896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible metallic core-shell nanostructured electrodes for neural interfacing.
    Rodilla BL; Arché-Núñez A; Ruiz-Gómez S; Domínguez-Bajo A; Fernández-González C; Guillén-Colomer C; González-Mayorga A; Rodríguez-Díez N; Camarero J; Miranda R; López-Dolado E; Ocón P; Serrano MC; Pérez L; González MT
    Sci Rep; 2024 Feb; 14(1):3729. PubMed ID: 38355737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks.
    Cortés-Llanos B; Rauti R; Ayuso-Sacido Á; Pérez L; Ballerini L
    Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular neural probes from single-crystal gold nanowires.
    Kang M; Jung S; Zhang H; Kang T; Kang H; Yoo Y; Hong JP; Ahn JP; Kwak J; Jeon D; Kotov NA; Kim B
    ACS Nano; 2014 Aug; 8(8):8182-9. PubMed ID: 25112683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior.
    Shin HS; Sohn JI; Kim DC; Huck WT; Welland ME; Choi HC; Kang DJ
    Nanotechnology; 2009 Feb; 20(8):085601. PubMed ID: 19417449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Ti
    Driscoll N; Richardson AG; Maleski K; Anasori B; Adewole O; Lelyukh P; Escobedo L; Cullen DK; Lucas TH; Gogotsi Y; Vitale F
    ACS Nano; 2018 Oct; 12(10):10419-10429. PubMed ID: 30207690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection.
    Kim SI; Eom G; Kang M; Kang T; Lee H; Hwang A; Yang H; Kim B
    Nanotechnology; 2015 Jun; 26(24):245702. PubMed ID: 26016531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous Gold Biointerfaces: Modifying Nanostructure to Control Neural Cell Coverage and Enhance Electrophysiological Recording Performance.
    Chapman CAR; Wang L; Chen H; Garrison J; Lein PJ; Seker E
    Adv Funct Mater; 2017 Jan; 27(3):. PubMed ID: 28626362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation-free optical and colorimetric detection of Hg(II) with M13 bacteriophage-templated Au nanowires.
    Manivannan S; Park S; Jeong J; Kim K
    Biosens Bioelectron; 2020 Aug; 161():112237. PubMed ID: 32365012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanowire lithography: fabricating controllable electrode gaps using Au-Ag-Au nanowires.
    Liu S; Tok JB; Bao Z
    Nano Lett; 2005 Jun; 5(6):1071-6. PubMed ID: 15943445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplification of resonance Rayleigh scattering of gold nanoparticles by tweaking into nanowires: Bio-sensing of α-tocopherol by enhanced resonance Rayleigh scattering of curcumin capped gold nanowires through non-covalent interaction.
    El Kurdi R; Patra D
    Talanta; 2017 Jun; 168():82-90. PubMed ID: 28391869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold as an intruder in ZnO nanowires.
    Méndez-Reyes JM; Monroy BM; Bizarro M; Güell F; Martínez A; Ramos E
    Phys Chem Chem Phys; 2015 Sep; 17(33):21525-32. PubMed ID: 26219752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanostructures on flexible substrates as electrochemical dopamine sensors.
    Hsu MS; Chen YL; Lee CY; Chiu HT
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5570-5. PubMed ID: 23020235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of OH
    El Kurdi R; Patra D
    Phys Chem Chem Phys; 2017 Feb; 19(7):5077-5090. PubMed ID: 28134362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires.
    Araki T; Yoshida F; Uemura T; Noda Y; Yoshimoto S; Kaiju T; Suzuki T; Hamanaka H; Baba K; Hayakawa H; Yabumoto T; Mochizuki H; Kobayashi S; Tanaka M; Hirata M; Sekitani T
    Adv Healthc Mater; 2019 May; 8(10):e1900130. PubMed ID: 30946540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave synthesis of electrically conductive gold nanowires on DNA scaffolds.
    Kundu S; Liang H
    Langmuir; 2008 Sep; 24(17):9668-74. PubMed ID: 18671418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Structure of Ultrathin Gold Nanowires.
    Yu Y; Cui F; Sun J; Yang P
    Nano Lett; 2016 May; 16(5):3078-84. PubMed ID: 27071038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell.
    Yang L; Zhang Y; Chu M; Deng W; Tan Y; Ma M; Su X; Xie Q; Yao S
    Biosens Bioelectron; 2014 Feb; 52():105-10. PubMed ID: 24035853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen electrocatalysis on single crystals and on nanostructured electrodes.
    Santos E; Hindelang P; Quaino P; Schulz EN; Soldano G; Schmickler W
    Chemphyschem; 2011 Aug; 12(12):2274-9. PubMed ID: 21710676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.