These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34700266)

  • 1. High-Selectivity imaging of the closed fatigue crack due to thermal environment using surface-acoustic-wave phased array (SAW PA).
    Ohara Y; Oshiumi T; Wu X; Uchimoto T; Takagi T; Tsuji T; Mihara T
    Ultrasonics; 2022 Feb; 119():106629. PubMed ID: 34700266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear ultrasonic phased array with fixed-voltage fundamental wave amplitude difference for high-selectivity imaging of closed cracks.
    Ohara Y; Nakajima H; Haupert S; Tsuji T; Mihara T
    J Acoust Soc Am; 2019 Jul; 146(1):266. PubMed ID: 31370588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface breaking crack sizing method using pulse-echo Rayleigh waves.
    Verma B; Bélanger P
    Ultrasonics; 2024 Mar; 138():107232. PubMed ID: 38183757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.
    Ohara Y; Horinouchi S; Hashimoto M; Shintaku Y; Yamanaka K
    Ultrasonics; 2011 Aug; 51(6):661-6. PubMed ID: 21414647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Crack Monitoring by Rayleigh Waves with a Piezoelectric-Polymer-Film Ultrasonic Transducer Array.
    Li X; Wong VK; Yousry YM; Lim DBK; Christopher Subhodayam PT; Yao K; Feng L; Qian X; Fan Z
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of fatigue crack closure effect on the evaluation of edge cracks with the fundamental mode of edge waves.
    Zhu H; Kotousov A; Tai Ng C
    Ultrasonics; 2024 Mar; 138():107266. PubMed ID: 38394741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability Analysis of PAUT Based on the Round-Robin Test for Pipe Welds with Thermal Fatigue Cracks.
    Kang D; Choi YM; Lee DM; Kim JB; Kim YK; Park TS; Park IK
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Low-Frequency Phased Array for Imaging Defects in Concrete Structures.
    Ohara Y; Kikuchi K; Tsuji T; Mihara T
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
    Yang C; Xu W; Guo B; Shan D; Zhang J
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of closed cracks in railway using eddy current pulsed thermography.
    Yin H; Peng J; Zhang X; Tian K; Zhang Y; Guo J
    Appl Opt; 2021 Jun; 60(17):5195-5202. PubMed ID: 34143088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring 3D elastic-wave scattering at interfaces using high-resolution phased-array system.
    Ohara Y; Remillieux MC; Ulrich TJ; Ozawa S; Tsunoda K; Tsuji T; Mihara T
    Sci Rep; 2022 May; 12(1):8291. PubMed ID: 35614103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves.
    Lee SE; Hong JW
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavefield imaging of nonlinear ultrasonic Lamb waves for visualizing fatigue micro-cracks.
    Xu H; Liu L; Li X; Xiang Y; Xuan FZ
    Ultrasonics; 2024 Mar; 138():107214. PubMed ID: 38056320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers.
    Xiao W; Yu L; Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear acoustic response through minute surface cracks: FEM simulation and experimentation.
    Kawashima K; Omote R; Ito T; Fujita H; Shima T
    Ultrasonics; 2002 May; 40(1-8):611-5. PubMed ID: 12160011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative Rayleigh wave excitation method using an ultrasonic phased array.
    Verma B; Bélanger P
    Ultrasonics; 2023 Dec; 135():107121. PubMed ID: 37572395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks.
    Haupert S; Ohara Y; Carcreff E; Renaud G
    Ultrasonics; 2019 Jul; 96():132-139. PubMed ID: 30833180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.
    Shen Y; Cesnik CE
    Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.