These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 34700312)
1. Flexible core/shelled PPy@PANI nanotube porous films for hybrid supercapacitors. Zhang G; Zhang J; Li W; Wang J; Li X Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34700312 [TBL] [Abstract][Full Text] [Related]
2. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite. Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162 [TBL] [Abstract][Full Text] [Related]
3. Structural Tuning of a Flexible and Porous Polypyrrole Film by a Template-Assisted Method for Enhanced Capacitance for Supercapacitor Applications. Wang T; Wang Y; Zhang D; Hu X; Zhang L; Zhao C; He YS; Zhang W; Yang N; Ma ZF ACS Appl Mater Interfaces; 2021 Apr; 13(15):17726-17735. PubMed ID: 33821614 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors. Ben J; Song Z; Liu X; Lü W; Li X Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960 [TBL] [Abstract][Full Text] [Related]
5. MXene (Ti Yuan T; Zhang Z; Liu Q; Liu XT; Miao YN; Yao CL Carbohydr Polym; 2023 Mar; 304():120519. PubMed ID: 36641165 [TBL] [Abstract][Full Text] [Related]
6. Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors. Xu H; Cui L; Pan X; An Y; Jin X Int J Biol Macromol; 2022 Oct; 219():1135-1145. PubMed ID: 36049565 [TBL] [Abstract][Full Text] [Related]
7. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Li H; Song J; Wang L; Feng X; Liu R; Zeng W; Huang Z; Ma Y; Wang L Nanoscale; 2017 Jan; 9(1):193-200. PubMed ID: 27906390 [TBL] [Abstract][Full Text] [Related]
8. Opening MXene Ion Transport Channels by Intercalating PANI Nanoparticles from the Self-Assembly Approach for High Volumetric and Areal Energy Density Supercapacitors. Wang X; Wang Y; Liu D; Li X; Xiao H; Ma Y; Xu M; Yuan G; Chen G ACS Appl Mater Interfaces; 2021 Jul; 13(26):30633-30642. PubMed ID: 34156249 [TBL] [Abstract][Full Text] [Related]
9. High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors. Fan Z; Zhu J; Sun X; Cheng Z; Liu Y; Wang Y ACS Appl Mater Interfaces; 2017 Jul; 9(26):21763-21772. PubMed ID: 28605894 [TBL] [Abstract][Full Text] [Related]
10. Iron Sulfide Microspheres Supported on Cellulose-Carbon Nanotube Conductive Flexible Film as an Electrode Material for Aqueous-Based Symmetric Supercapacitors with High Voltage. Parayangattil Jyothibasu J; Tien YC; Chen ZT; Yang H; Chiang TH; El-Mahdy AFM; Lee RH ACS Omega; 2024 Jun; 9(24):26582-26595. PubMed ID: 38911739 [TBL] [Abstract][Full Text] [Related]
11. Improved Performance of All-Solid-State Flexible Supercapacitor Based on the Stress-Compensation Effect. Wang DY; Dong ZQ; Zhang S; Hu TY; Zhang XT; Li X; Li F J Nanosci Nanotechnol; 2021 Mar; 21(3):1687-1693. PubMed ID: 33404434 [TBL] [Abstract][Full Text] [Related]
12. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film. Chen J; Wang Y; Cao J; Liu Y; Zhou Y; Ouyang JH; Jia D ACS Appl Mater Interfaces; 2017 Jun; 9(23):19831-19842. PubMed ID: 28537372 [TBL] [Abstract][Full Text] [Related]
13. Molecular-level uniform graphene/polyaniline composite film for flexible supercapacitors with high-areal capacitance. Wang P; Shao F; Li B; Su Y; Yang Z; Hu N; Zhang Y Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36689767 [TBL] [Abstract][Full Text] [Related]
14. Thermally doped polypyrrole nanotubes with sulfuric acid for flexible all-solid-state supercapacitors. Yang Z; Chen Z Nanotechnology; 2019 Jun; 30(24):245402. PubMed ID: 30822769 [TBL] [Abstract][Full Text] [Related]
15. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO Wang J; Dong L; Xu C; Ren D; Ma X; Kang F ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability. Shao F; Bian SW; Zhu Q; Guo MX; Liu S; Peng YH Chem Asian J; 2016 Jul; 11(13):1906-12. PubMed ID: 27156174 [TBL] [Abstract][Full Text] [Related]
17. Interfacial Engineered Polyaniline/Sulfur-Doped TiO Li C; Wang Z; Li S; Cheng J; Zhang Y; Zhou J; Yang D; Tong DG; Wang B ACS Appl Mater Interfaces; 2018 May; 10(21):18390-18399. PubMed ID: 29727153 [TBL] [Abstract][Full Text] [Related]
18. In Situ Growth of Hierarchical Ni-Mn-O Solid Solution on a Flexible and Porous Ni Electrode for High-Performance All-Solid-State Asymmetric Supercapacitors. Yu H; Li X; Yang J; Deng Z; Yu ZZ Chemistry; 2019 Nov; 25(66):15131-15140. PubMed ID: 31475756 [TBL] [Abstract][Full Text] [Related]
19. Hierarchically core-shell structured nanocellulose/carbon nanotube hybrid aerogels for patternable, self-healing and flexible supercapacitors. Cheng X; Wang H; Wang S; Jiao Y; Sang C; Jiang S; He S; Mei C; Xu X; Xiao H; Han J J Colloid Interface Sci; 2024 Apr; 660():923-933. PubMed ID: 38280285 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of a flexible porous polypyrrole film with a 3D micro-nanostructure and its electrochemical properties. Wang J; Cao J; Xu Y; An H; Li X Phys Chem Chem Phys; 2023 Apr; 25(15):10925-10934. PubMed ID: 37016800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]