These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34700338)

  • 1. Richness of molecular junction configurations revealed by tracking a full pull-push cycle.
    Yelin T; Chakrabarti S; Vilan A; Tal O
    Nanoscale; 2021 Nov; 13(44):18434-18440. PubMed ID: 34700338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic conduction during the formation stages of a single-molecule junction.
    Pal AN; Klein T; Vilan A; Tal O
    Beilstein J Nanotechnol; 2018; 9():1471-1477. PubMed ID: 29977680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.
    Hybertsen MS; Venkataraman L
    Acc Chem Res; 2016 Mar; 49(3):452-60. PubMed ID: 26938931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Transport through a Single Conjugated Rigid Molecule, a Mechanical Break Junction Study.
    Frisenda R; Stefani D; van der Zant HSJ
    Acc Chem Res; 2018 Jun; 51(6):1359-1367. PubMed ID: 29862817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons' Molecular Junctions.
    Martinez-Garcia A; de Ara T; Pastor-Amat L; Untiedt C; Lombardi EB; Dednam W; Sabater C
    J Phys Chem C Nanomater Interfaces; 2023 Dec; 127(48):23303-23311. PubMed ID: 38352239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal-molecule interaction.
    Kaneko S; Takahashi R; Fujii S; Nishino T; Kiguchi M
    Phys Chem Chem Phys; 2017 Apr; 19(15):9843-9848. PubMed ID: 28352875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation and Control of Charge Transport Through Single-Molecule Junctions.
    Wang K; Xu B
    Top Curr Chem (Cham); 2017 Feb; 375(1):17. PubMed ID: 28120303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-Based Molecular Junctions for Practical Molecular Electronics.
    McCreery RL
    Acc Chem Res; 2022 Oct; 55(19):2766-2779. PubMed ID: 36137180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. z-Piezo Pulse-Modulated STM Break Junction: Toward Single-Molecule Rectifiers with Dissimilar Metal Electrodes.
    Li XM; Wang YH; Seng JW; Zheng JF; Cao R; Shao Y; Chen JZ; Li JF; Zhou XS; Mao BW
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8656-8663. PubMed ID: 33587592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductance of molecular junctions formed with silver electrodes.
    Kim T; Vázquez H; Hybertsen MS; Venkataraman L
    Nano Lett; 2013 Jul; 13(7):3358-64. PubMed ID: 23731268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.
    Simeone FC; Rampi MA
    Chimia (Aarau); 2010; 64(6):362-9. PubMed ID: 21137710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Single-Molecule-Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes.
    Peiris CR; Vogel YB; Le Brun AP; Aragonès AC; Coote ML; Díez-Pérez I; Ciampi S; Darwish N
    J Am Chem Soc; 2019 Sep; 141(37):14788-14797. PubMed ID: 31455076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Electromechanical Approach to Understanding Binding Configurations in Single-Molecule Devices.
    Ramachandran R; Li HB; Lo WY; Neshchadin A; Yu L; Hihath J
    Nano Lett; 2018 Oct; 18(10):6638-6644. PubMed ID: 30247037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.
    Li X; Hu D; Tan Z; Bai J; Xiao Z; Yang Y; Shi J; Hong W
    Top Curr Chem (Cham); 2017 Apr; 375(2):42. PubMed ID: 28337670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and electronic characterization of single molecular junction devices: a comprehensive approach.
    Zhou J; Chen F; Xu B
    J Am Chem Soc; 2009 Aug; 131(30):10439-46. PubMed ID: 19722620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation analysis of atomic and single-molecule junction conductance.
    Makk P; Tomaszewski D; Martinek J; Balogh Z; Csonka S; Wawrzyniak M; Frei M; Venkataraman L; Halbritter A
    ACS Nano; 2012 Apr; 6(4):3411-23. PubMed ID: 22397391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Conductance: Gaussian Process Regression for Molecular Electronics.
    Deffner M; Weise MP; Zhang H; Mücke M; Proppe J; Franco I; Herrmann C
    J Chem Theory Comput; 2023 Feb; 19(3):992-1002. PubMed ID: 36692968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent Ag-C Bonding Contacts from Unprotected Terminal Acetylenes for Molecular Junctions.
    Li S; Yu H; Chen X; Gewirth AA; Moore JS; Schroeder CM
    Nano Lett; 2020 Jul; 20(7):5490-5495. PubMed ID: 32511930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.