These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34702522)

  • 1. Development of hierarchical porous bioceramic scaffolds with controlled micro/nano surface topography for accelerating bone regeneration.
    Zhang H; Zhang H; Xiong Y; Dong L; Li X
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112437. PubMed ID: 34702522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways.
    Xia L; Lin K; Jiang X; Xu Y; Zhang M; Chang J; Zhang Z
    J Mater Chem B; 2013 Oct; 1(40):5403-5416. PubMed ID: 32261247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds.
    Liu Y; Yang S; Cao L; Zhang X; Wang J; Liu C
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110622. PubMed ID: 32204064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair.
    Qin H; Wei Y; Han J; Jiang X; Yang X; Wu Y; Gou Z; Chen L
    J Tissue Eng Regen Med; 2022 Apr; 16(4):409-421. PubMed ID: 35156316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis.
    Xu M; Zhai D; Xia L; Li H; Chen S; Fang B; Chang J; Wu C
    Nanoscale; 2016 Jul; 8(28):13790-803. PubMed ID: 27380634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Biomimetic Natural Wood Hierarchical Porous-Structure Bioceramic with Micro/Nanowhisker Coating to Modulate Cellular Behavior and Osteoinductive Activity.
    Wu L; Zhou C; Zhang B; Lei H; Wang W; Pu X; Liu L; Liang J; Fan Y; Zhang X
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48395-48407. PubMed ID: 33064436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model.
    Diao J; OuYang J; Deng T; Liu X; Feng Y; Zhao N; Mao C; Wang Y
    Adv Healthc Mater; 2018 Sep; 7(17):e1800441. PubMed ID: 30044555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt-doped bioceramic scaffolds fabricated by 3D printing show enhanced osteogenic and angiogenic properties for bone repair.
    Li J; Zhao C; Liu C; Wang Z; Ling Z; Lin B; Tan B; Zhou L; Chen Y; Liu D; Zou X; Liu W
    Biomed Eng Online; 2021 Jul; 20(1):70. PubMed ID: 34303371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration.
    Zhang B; Xing F; Chen L; Zhou C; Gui X; Su Z; Fan S; Zhou Z; Jiang Q; Zhao L; Liu M; Fan Y; Zhang X
    Biomater Adv; 2023 Feb; 145():213261. PubMed ID: 36577193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.
    Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS
    J Mater Sci Mater Med; 2016 Jul; 27(7):121. PubMed ID: 27272903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.
    Zhang J; Liu X; Li H; Chen C; Hu B; Niu X; Li Q; Zhao B; Xie Z; Wang Y
    Stem Cell Res Ther; 2016 Sep; 7(1):136. PubMed ID: 27650895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite Nanowire@Magnesium Silicate Core-Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration.
    Sun TW; Yu WL; Zhu YJ; Yang RL; Shen YQ; Chen DY; He YH; Chen F
    ACS Appl Mater Interfaces; 2017 May; 9(19):16435-16447. PubMed ID: 28481082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats.
    Moncal KK; Aydin RST; Abu-Laban M; Heo DN; Rizk E; Tucker SM; Lewis GS; Hayes D; Ozbolat IT
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110128. PubMed ID: 31546389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.