These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34702527)

  • 1. Facile synthesis of multi-functional nano-composites by precise loading of Cu
    Wu H; Yang S; Xiao J; Ouyang Z; Yang M; Zhang M; Zhao D; Huang Q
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112442. PubMed ID: 34702527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using MgO nanoparticles as a potential platform to precisely load and steadily release Ag ions for enhanced osteogenesis and bacterial killing.
    Yang S; Liang L; Liu L; Yin Y; Liu Y; Lei G; Zhou K; Huang Q; Wu H
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111399. PubMed ID: 33321576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate.
    Huang Q; Ouyang Z; Tan Y; Wu H; Liu Y
    Acta Biomater; 2019 Dec; 100():415-426. PubMed ID: 31553923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new composite fabricated from hydroxyapatite, gelatin-MgO microparticles, and compatibilized poly(butylene succinate) with osteogenic functionality.
    Wu DY; Wang SS; Wu CS
    Biomater Adv; 2023 Nov; 154():213586. PubMed ID: 37595523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D3 Release from MgO Doped 3D Printed TCP Scaffolds for Bone Regeneration.
    Jo Y; Majumdar U; Bose S
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1676-1685. PubMed ID: 38386843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of osteoblasts on osteoclast differentiation and activity induced by titanium with nanotopography.
    Bighetti-Trevisan RL; Ferraz EP; Silva MBF; Zatta GC; de Almeida MB; Rosa AL; Beloti MM
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113448. PubMed ID: 37451224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect of functionalized poly(l-lactide) with surface-modified MgO and chitin whiskers on osteogenesis in vivo and in vitro.
    Liu W; Zou Z; Zhou L; Liu H; Wen W; Zhou C; Luo B
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109851. PubMed ID: 31349474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2017 Sep; 12(5):055011. PubMed ID: 28944766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loading Cu-doped magnesium oxide onto surface of magnetic nanoparticles to prepare magnetic disinfectant with enhanced antibacterial activity.
    Zhang X; Wang W; Zhang Y; Zeng T; Jia C; Chang L
    Colloids Surf B Biointerfaces; 2018 Jan; 161():433-441. PubMed ID: 29121616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streptococcus gordonii induces bone resorption by increasing osteoclast differentiation and reducing osteoblast differentiation.
    Park OJ; Kim J; Kim HY; Kwon Y; Yun CH; Han SH
    Microb Pathog; 2019 Jan; 126():218-223. PubMed ID: 30414445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Role of Cyanidin-3-glucoside on the Differentiation of Bone Cells.
    Park KH; Gu DR; So HS; Kim KJ; Lee SH
    J Dent Res; 2015 Dec; 94(12):1676-83. PubMed ID: 26350961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-Magnesium Oxide: A Novel Bactericide Against Copper-Tolerant Xanthomonas perforans Causing Tomato Bacterial Spot.
    Liao YY; Strayer-Scherer AL; White J; Mukherjee A; De La Torre-Roche R; Ritchie L; Colee J; Vallad GE; Freeman JH; Jones JB; Paret ML
    Phytopathology; 2019 Jan; 109(1):52-62. PubMed ID: 30070617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethyl-2, 5-dihydroxybenzoate displays dual activity by promoting osteoblast differentiation and inhibiting osteoclast differentiation.
    Kwon BJ; Lee MH; Koo MA; Kim MS; Seon GM; Han JJ; Park JC
    Biochem Biophys Res Commun; 2016 Mar; 471(3):335-41. PubMed ID: 26869515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMP2 immune complexes promote new bone formation by facilitating the direct contact between osteoclasts and osteoblasts.
    Xu Y; Yang Y; Hua Z; Li S; Yang Z; Liu Q; Fu G; Ji P; Wu Q
    Biomaterials; 2021 Aug; 275():120890. PubMed ID: 34130144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato.
    Liao YY; Strayer-Scherer A; White JC; De La Torre-Roche R; Ritchie L; Colee J; Vallad GE; Freeman J; Jones JB; Paret ML
    Sci Rep; 2019 Dec; 9(1):18530. PubMed ID: 31811183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development.
    Mukherjee A; Rotwein P
    Mol Cell Biol; 2012 Jan; 32(2):490-500. PubMed ID: 22064480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-Modified Ti6Al4 V Suppresses Inflammatory Response and Osteoclastogenesis while Enhancing Extracellular Matrix Formation for Osteoporotic Bone Regeneration.
    Xu X; Lu Y; Yang X; Du Z; Zhou L; Li S; Chen C; Luo K; Lin J
    ACS Biomater Sci Eng; 2018 Sep; 4(9):3364-3373. PubMed ID: 33435071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture.
    Wu L; Feyerabend F; Schilling AF; Willumeit-Römer R; Luthringer BJC
    Acta Biomater; 2015 Nov; 27():294-304. PubMed ID: 26318802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.
    Mao L; Xia L; Chang J; Liu J; Jiang L; Wu C; Fang B
    Acta Biomater; 2017 Oct; 61():217-232. PubMed ID: 28807800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory mechanisms of osteoblast and osteoclast differentiation.
    Katagiri T; Takahashi N
    Oral Dis; 2002 May; 8(3):147-59. PubMed ID: 12108759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.