BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 34702699)

  • 1. Role of epigenetic modifications in the development of crops essential traits.
    Wang YN; Xu T; Wang WP; Zhang QZ; Xie LN
    Yi Chuan; 2021 Sep; 43(9):858-879. PubMed ID: 34702699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement.
    Agarwal G; Kudapa H; Ramalingam A; Choudhary D; Sinha P; Garg V; Singh VK; Patil GB; Pandey MK; Nguyen HT; Guo B; Sunkar R; Niederhuth CE; Varshney RK
    Funct Integr Genomics; 2020 Nov; 20(6):739-761. PubMed ID: 33089419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetics: possible applications in climate-smart crop breeding.
    Varotto S; Tani E; Abraham E; Krugman T; Kapazoglou A; Melzer R; Radanović A; Miladinović D
    J Exp Bot; 2020 Aug; 71(17):5223-5236. PubMed ID: 32279074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural and induced epigenetic variation for crop improvement.
    Lieberman-Lazarovich M; Kaiserli E; Bucher E; Mladenov V
    Curr Opin Plant Biol; 2022 Dec; 70():102297. PubMed ID: 36108411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrospective and perspective of plant epigenetics in China.
    Duan CG; Zhu JK; Cao X
    J Genet Genomics; 2018 Nov; 45(11):621-638. PubMed ID: 30455036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic approaches to crop breeding: current status and perspectives.
    Dalakouras A; Vlachostergios D
    J Exp Bot; 2021 Jul; 72(15):5356-5371. PubMed ID: 34017985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation: from model plants to vegetable crops.
    Nie WF
    Biochem Soc Trans; 2021 Jun; 49(3):1479-1487. PubMed ID: 34060587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic Landmarks of Leaf Senescence and Crop Improvement.
    Ostrowska-Mazurek A; Kasprzak P; Kubala S; Zaborowska M; Sobieszczuk-Nowicka E
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops.
    Mladenov V; Fotopoulos V; Kaiserli E; Karalija E; Maury S; Baranek M; Segal N; Testillano PS; Vassileva V; Pinto G; Nagel M; Hoenicka H; Miladinović D; Gallusci P; Vergata C; Kapazoglou A; Abraham E; Tani E; Gerakari M; Sarri E; Avramidou E; Gašparović M; Martinelli F
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics and its role in effecting agronomical traits.
    Gupta C; Salgotra RK
    Front Plant Sci; 2022; 13():925688. PubMed ID: 36046583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenome editing: targeted manipulation of epigenetic modifications in plants.
    Shin H; Choi WL; Lim JY; Huh JH
    Genes Genomics; 2022 Mar; 44(3):307-315. PubMed ID: 35000141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic Modifications in Genome Help Remembering the Stress Tolerance Strategy Adopted by the Plant.
    Kumar S; Mohapatra T
    Front Biosci (Landmark Ed); 2024 Mar; 29(3):126. PubMed ID: 38538276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives.
    Singh D; Chaudhary P; Taunk J; Kumar Singh C; Sharma S; Singh VJ; Singh D; Chinnusamy V; Yadav R; Pal M
    J Exp Bot; 2021 Oct; 72(20):6836-6855. PubMed ID: 34302734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant synthetic epigenomic engineering for crop improvement.
    Yang L; Zhang P; Wang Y; Hu G; Guo W; Gu X; Pu L
    Sci China Life Sci; 2022 Nov; 65(11):2191-2204. PubMed ID: 35851940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting induced and natural epigenetic variation for crop improvement.
    Springer NM; Schmitz RJ
    Nat Rev Genet; 2017 Sep; 18(9):563-575. PubMed ID: 28669983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring epitranscriptomics for crop improvement and environmental stress tolerance.
    Yang X; Patil S; Joshi S; Jamla M; Kumar V
    Plant Physiol Biochem; 2022 Jul; 183():56-71. PubMed ID: 35567875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Relationship between Cadmium Toxicity and the Modulation of Epigenetic Traits in Plants.
    Niekerk LA; Carelse MF; Bakare OO; Mavumengwana V; Keyster M; Gokul A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenome and Epitranscriptome: Potential Resources for Crop Improvement.
    Hou Q; Wan X
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring and exploiting epigenetic variation in crops.
    King GJ; Amoah S; Kurup S
    Genome; 2010 Nov; 53(11):856-68. PubMed ID: 21076501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.