BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34703007)

  • 1. Integration of DNA sequencing with population pharmacokinetics to improve the prediction of irinotecan exposure in cancer patients.
    Karas S; Etheridge AS; Nickerson DA; Cox NJ; Mohlke KL; Cecchin E; Toffoli G; Mathijssen RHJ; Forrest A; Bies RR; Innocenti F
    Br J Cancer; 2022 Mar; 126(4):640-651. PubMed ID: 34703007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of UGT1A1, CYP3A and CES Activities on the Pharmacokinetics of Irinotecan and its Metabolites in Patients with UGT1A1 Gene Polymorphisms.
    Yokokawa A; Kaneko S; Endo S; Minowa Y; Ayukawa H; Hirano R; Nagashima F; Naruge D; Okano N; Kobayashi T; Kawai K; Furuse J; Furuta T; Shibasaki H
    Eur J Drug Metab Pharmacokinet; 2021 Mar; 46(2):317-324. PubMed ID: 33619631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics.
    Innocenti F; Kroetz DL; Schuetz E; Dolan ME; Ramírez J; Relling M; Chen P; Das S; Rosner GL; Ratain MJ
    J Clin Oncol; 2009 Jun; 27(16):2604-14. PubMed ID: 19349540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetic analysis of irinotecan plus bevacizumab in patients with advanced solid tumors.
    Denlinger CS; Blanchard R; Xu L; Bernaards C; Litwin S; Spittle C; Berg DJ; McLaughlin S; Redlinger M; Dorr A; Hambleton J; Holden S; Kearns A; Kenkare-Mitra S; Lum B; Meropol NJ; O'Dwyer PJ
    Cancer Chemother Pharmacol; 2009 Dec; 65(1):97-105. PubMed ID: 19415281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Influence of genetic polymorphisms in UGT1A1, UGT1A7 and UGT1A9 on the pharmacokynetics of irinotecan, SN-38 and SN-38G].
    Valenzuela Jiménez B; González Sales M; Escudero Ortiz V; Martínez Navarro E; Pérez Ruixo C; Rebollo Liceaga J; González Manzano R; Pérez Ruixo JJ
    Farm Hosp; 2013; 37(2):111-27. PubMed ID: 23789755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of exposure risk of irinotecan and its active metabolite, SN-38, through perspiration during chemotherapy.
    Irie K; Okada A; Masuda Y; Fukushima K; Sugioka N; Okuda C; Hata A; Kaji R; Okada Y; Katakami N; Fukushima S
    J Oncol Pharm Pract; 2019 Jun; 25(4):865-868. PubMed ID: 29651916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetic and Pharmacogenetic Markers of Irinotecan Toxicity.
    Hahn RZ; Antunes MV; Verza SG; Perassolo MS; Suyenaga ES; Schwartsmann G; Linden R
    Curr Med Chem; 2019; 26(12):2085-2107. PubMed ID: 29932028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Sampling Strategies for Irinotecan (CPT-11) and its Active Metabolite (SN-38) in Cancer Patients.
    Karas S; Etheridge AS; Tsakalozou E; Ramírez J; Cecchin E; van Schaik RHN; Toffoli G; Ratain MJ; Mathijssen RHJ; Forrest A; Bies RR; Innocenti F
    AAPS J; 2020 Mar; 22(3):59. PubMed ID: 32185579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil.
    Wang Y; Shen L; Xu N; Wang JW; Jiao SC; Liu ZY; Xu JM
    World J Gastroenterol; 2012 Dec; 18(45):6635-44. PubMed ID: 23236239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes.
    Mathijssen RH; de Jong FA; van Schaik RH; Lepper ER; Friberg LE; Rietveld T; de Bruijn P; Graveland WJ; Figg WD; Verweij J; Sparreboom A
    J Natl Cancer Inst; 2004 Nov; 96(21):1585-92. PubMed ID: 15523087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients.
    Sai K; Saito Y; Maekawa K; Kim SR; Kaniwa N; Nishimaki-Mogami T; Sawada J; Shirao K; Hamaguchi T; Yamamoto N; Kunitoh H; Ohe Y; Yamada Y; Tamura T; Yoshida T; Matsumura Y; Ohtsu A; Saijo N; Minami H
    Cancer Chemother Pharmacol; 2010 May; 66(1):95-105. PubMed ID: 19771428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetics of irinotecan and its metabolites in pediatric cancer patients: a report from the children's oncology group.
    Thompson PA; Gupta M; Rosner GL; Yu A; Barrett J; Bomgaars L; Bernstein ML; Blaney SM; Mondick J
    Cancer Chemother Pharmacol; 2008 Nov; 62(6):1027-37. PubMed ID: 18278496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regorafenib plus FOLFIRI with irinotecan dose escalated according to uridine diphosphate glucuronosyltransferase 1A1genotyping in previous treated metastatic colorectal cancer patients:study protocol for a randomized controlled trial.
    Ma CJ; Chang TK; Tsai HL; Su WC; Huang CW; Yeh YS; Chang YT; Wang JY
    Trials; 2019 Dec; 20(1):751. PubMed ID: 31856912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of UGT1A1*28 genotype and SN-38 pharmacokinetics for irinotecan-based chemotherapy in patients with advanced colorectal cancer: results from a multicenter, retrospective study in Shanghai.
    Cai X; Cao W; Ding H; Liu T; Zhou X; Wang M; Zhong M; Zhao Z; Xu Q; Wang L
    J Cancer Res Clin Oncol; 2013 Sep; 139(9):1579-89. PubMed ID: 23892411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of pharmacogenomics and hepatic nuclear imaging-related covariates by population pharmacokinetic models of irinotecan and its metabolites.
    Liu Z; Martin JH; Liauw W; McLachlan SA; Link E; Matera A; Thompson M; Jefford M; Hicks RJ; Cullinane C; Hatzimihalis A; Campbell I; Crowley S; Beale PJ; Karapetis CS; Price T; Burge ME; Michael M
    Eur J Clin Pharmacol; 2022 Jan; 78(1):53-64. PubMed ID: 34480602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan.
    Ando Y; Ueoka H; Sugiyama T; Ichiki M; Shimokata K; Hasegawa Y
    Ther Drug Monit; 2002 Feb; 24(1):111-6. PubMed ID: 11805731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer.
    Araki K; Fujita K; Ando Y; Nagashima F; Yamamoto W; Endo H; Miya T; Kodama K; Narabayashi M; Sasaki Y
    Cancer Sci; 2006 Nov; 97(11):1255-9. PubMed ID: 16965601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients.
    Onoue M; Terada T; Kobayashi M; Katsura T; Matsumoto S; Yanagihara K; Nishimura T; Kanai M; Teramukai S; Shimizu A; Fukushima M; Inui K
    Int J Clin Oncol; 2009 Apr; 14(2):136-42. PubMed ID: 19390945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlative analysis of plasma SN-38 levels and DPD activity with outcomes of FOLFIRI regimen for metastatic colorectal cancer with UGT1A1 *28 and *6 wild type and its implication for individualized chemotherapy.
    Cai X; Tian C; Wang L; Zhuang R; Zhang X; Guo Y; Lu H; Wang H; Li X; Gao J; Li Q; Wang C
    Cancer Biol Ther; 2017 Mar; 18(3):186-193. PubMed ID: 28278081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population pharmacokinetics of liposomal irinotecan in patients with cancer and exposure-safety analyses in patients with metastatic pancreatic cancer.
    Brendel K; Bekaii-Saab T; Boland PM; Dayyani F; Dean A; Macarulla T; Maxwell F; Mody K; Pedret-Dunn A; Wainberg ZA; Zhang B
    CPT Pharmacometrics Syst Pharmacol; 2021 Dec; 10(12):1550-1563. PubMed ID: 34750990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.