These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34703666)
1. Dynamic changes in moisture content and applicability analysis of a typical litter prediction model in Yunnan Province. Zhang Y; Tian L PeerJ; 2021; 9():e12206. PubMed ID: 34703666 [TBL] [Abstract][Full Text] [Related]
2. [Prediction of litter moisture content in Tahe Forestry Bureau of Northeast China based on FWI moisture codes]. Zhang H; Jin S; Di XY Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):2049-55. PubMed ID: 25345057 [TBL] [Abstract][Full Text] [Related]
3. Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China. Li W; Xu Q; Yi J; Liu J Sci Rep; 2022 Nov; 12(1):19029. PubMed ID: 36348041 [TBL] [Abstract][Full Text] [Related]
4. Prediction models and the extrapolation effects for water content of surface dead fuels in the typical stand of the Great Xing'an Mountains of China by one-hour time step. Yu HZ; Shu LF; Deng JF; Yang G; Liang Q; Li JH; Zhu HY Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3959-3968. PubMed ID: 30584722 [TBL] [Abstract][Full Text] [Related]
5. Applicability analysis of flame height estimation based on Byram's fireline intensity model under flat and windless conditions. Zhang Y; Luo A Sci Rep; 2024 Feb; 14(1):4441. PubMed ID: 38396250 [TBL] [Abstract][Full Text] [Related]
6. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview. Zhang JH; Yao FM; Liu C; Yang LM; Boken VK Int J Environ Res Public Health; 2011 Aug; 8(8):3156-78. PubMed ID: 21909297 [TBL] [Abstract][Full Text] [Related]
7. [A prediction model for forest fire-burnt area based on meteorological factors]. Qu ZL; Hu HQ Ying Yong Sheng Tai Xue Bao; 2007 Dec; 18(12):2705-9. PubMed ID: 18333443 [TBL] [Abstract][Full Text] [Related]
8. [Prediction models for ground surface fuels moisture content of Larix gmelinii stand in Daxing'anling of China based on one-hour time step]. Yu HZ; Sen J; Di XY Ying Yong Sheng Tai Xue Bao; 2013 Jun; 24(6):1565-71. PubMed ID: 24066541 [TBL] [Abstract][Full Text] [Related]
9. Prediction model of water content in surface dead fuel based on convolution neural network and meteoro-logical factors regression. Sun L; Ma LG; Guo Y; Fan JL; Chen BX; Hu TX Ying Yong Sheng Tai Xue Bao; 2023 Sep; 34(9):2453-2461. PubMed ID: 37899112 [TBL] [Abstract][Full Text] [Related]
10. [Seasonal variation and driving factors of forest fire in Zhejiang Province, China, based on MODIS satellite hot spots]. Zeng AC; Cai QJ; Su ZW; Guo XB; Jin QF; Guo FT Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):399-406. PubMed ID: 32476331 [TBL] [Abstract][Full Text] [Related]
11. Moisture content estimation of forest litter based on remote sensing data. Yang X; Yu Y; Hu H; Sun L Environ Monit Assess; 2018 Jun; 190(7):421. PubMed ID: 29934742 [TBL] [Abstract][Full Text] [Related]
12. [Applicability of mixed effect model in the prediction of forest fire]. Zhang Z; Yang S; Zhu H; Wang GY; Guo FT; Sun SC Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1547-1554. PubMed ID: 35729132 [TBL] [Abstract][Full Text] [Related]
13. Forest fire risk estimation in a typical temperate forest in Northeastern China using the Canadian forest fire weather index: case study in autumn 2019 and 2020. Masinda MM; Li F; Qi L; Sun L; Hu T Nat Hazards (Dordr); 2022; 111(1):1085-1101. PubMed ID: 34642544 [TBL] [Abstract][Full Text] [Related]
14. [Fire behavior of Quercus mongolica leaf litter fuelbed under zero-slope and no-wind conditions. II. Analysis and modelling of fireline intensity, fuel consumption, and combustion efficiency]. Zhang JL; Liu BF; Di XY; Chu TF; Jin S Ying Yong Sheng Tai Xue Bao; 2013 Dec; 24(12):3381-90. PubMed ID: 24697055 [TBL] [Abstract][Full Text] [Related]
15. [Forest fire risk assessment for China under different climate scenarios.]. Tian XR; Dai X; Wang MY; Zhao FJ; Shu LF Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):769-776. PubMed ID: 29726181 [TBL] [Abstract][Full Text] [Related]
16. Modeling forest fire occurrences using count-data mixed models in Qiannan autonomous prefecture of Guizhou province in China. Xiao Y; Zhang X; Ji P PLoS One; 2015; 10(3):e0120621. PubMed ID: 25790309 [TBL] [Abstract][Full Text] [Related]
17. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling]. Jin S; Liu BF; Di XY; Chu TF; Zhang JL Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):51-9. PubMed ID: 22489479 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants. Tang N; Yuan M; Chen Z; Ma J; Sun R; Yang Y; He Q; Guo X; Hu S; Zhou J Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900920 [TBL] [Abstract][Full Text] [Related]
19. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions. De Angelis A; Ricotta C; Conedera M; Pezzatti GB PLoS One; 2015; 10(2):e0116875. PubMed ID: 25679957 [TBL] [Abstract][Full Text] [Related]
20. [Dynamics of forest fire weather indices in Tahe County of Great Xing' an Mountains region, Heilongjiang Province]. Di XY; Li YF; Sun J; Yang G Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1240-6. PubMed ID: 21812301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]