BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34704089)

  • 1. Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.
    Subramanian S; Scheufele K; Himthani N; Biros G
    Med Image Comput Comput Assist Interv; 2020 Oct; 12262():551-560. PubMed ID: 34704089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.
    Subramanian S; Ghafouri A; Scheufele KM; Himthani N; Davatzikos C; Biros G
    IEEE Trans Med Imaging; 2023 Apr; 42(4):982-995. PubMed ID: 36378796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WHERE DID THE TUMOR START? AN INVERSE SOLVER WITH SPARSE LOCALIZATION FOR TUMOR GROWTH MODELS.
    Subramanian S; Scheufele K; Mehl M; Biros G
    Inverse Probl; 2020 Apr; 36(4):. PubMed ID: 33746330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Automatic Calibration of Tumor-Growth Models Using a Single mpMRI Scan.
    Scheufele K; Subramanian S; Biros G
    IEEE Trans Med Imaging; 2021 Jan; 40(1):193-204. PubMed ID: 32931431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.
    Scheufele K; Subramanian S; Mang A; Biros G; Mehl M
    SIAM J Sci Comput; 2020; 42(3):B549-B580. PubMed ID: 33071533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration.
    Mang A; Toma A; Schuetz TA; Becker S; Eckey T; Mohr C; Petersen D; Buzug TM
    Med Phys; 2012 Jul; 39(7):4444-59. PubMed ID: 22830777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling brain-tumor biophysical models and diffeomorphic image registration.
    Scheufele K; Mang A; Gholami A; Davatzikos C; Biros G; Mehl M
    Comput Methods Appl Mech Eng; 2019 Apr; 347():533-567. PubMed ID: 31857736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect.
    Subramanian S; Gholami A; Biros G
    J Math Biol; 2019 Aug; 79(3):941-967. PubMed ID: 31127329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects.
    Hogea C; Davatzikos C; Biros G
    J Math Biol; 2008 Jun; 56(6):793-825. PubMed ID: 18026731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Susceptibility Mapping (QSM) Algorithms: Mathematical Rationale and Computational Implementations.
    Kee Y; Liu Z; Zhou L; Dimov A; Cho J; de Rochefort L; Seo JK; Wang Y
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2531-2545. PubMed ID: 28885147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression.
    Pati S; Sharma V; Aslam H; Thakur SP; Akbari H; Mang A; Subramanian S; Biros G; Davatzikos C; Bakas S
    Brainlesion; 2021; 12658():157-167. PubMed ID: 34514469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the extent of glioblastoma invasion : Approximate stationalization of anisotropic advection-diffusion-reaction equations in the context of glioblastoma invasion.
    Engwer C; Wenske M
    J Math Biol; 2021 Jan; 82(1-2):10. PubMed ID: 33496806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging.
    Bondiau PY; Clatz O; Sermesant M; Marcy PY; Delingette H; Frenay M; Ayache N
    Phys Med Biol; 2008 Feb; 53(4):879-93. PubMed ID: 18263946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans.
    Zhang RZ; Ezhov I; Balcerak M; Zhu A; Wiestler B; Menze B; Lowengrub J
    ArXiv; 2024 Jan; ():. PubMed ID: 38076515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adjoint-based method for a linear mechanically-coupled tumor model: Application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging.
    Feng X; Hormuth DA; Yankeelov TE
    Comput Mech; 2019 Feb; 63(2):159-180. PubMed ID: 30880856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical rate function determination in partial differential equations modeling cell population dynamics.
    Groh A; Kohr H; Louis AK
    J Math Biol; 2017 Feb; 74(3):533-565. PubMed ID: 27295108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic feasibility analysis of a quantitative elasticity estimation for breast anatomy using supine/prone patient postures.
    Hasse K; Neylon J; Sheng K; Santhanam AP
    Med Phys; 2016 Mar; 43(3):1299-1311. PubMed ID: 26936715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Regularization Homotopy Strategy for the Constrained Parameter Inversion of Partial Differential Equations.
    Liu T; Xue R; Liu C; Qi Y
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas.
    Gholami A; Mang A; Biros G
    J Math Biol; 2016 Jan; 72(1-2):409-33. PubMed ID: 25963601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.