BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34704446)

  • 1. Carbon Nanotubes for Radiation-Tolerant Electronics.
    Kanhaiya PS; Yu A; Netzer R; Kemp W; Doyle D; Shulaker MM
    ACS Nano; 2021 Nov; 15(11):17310-17318. PubMed ID: 34704446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable n-Type Doping of Carbon Nanotubes through Engineered Atomic Layer Deposition HfO
    Lau C; Srimani T; Bishop MD; Hills G; Shulaker MM
    ACS Nano; 2018 Nov; 12(11):10924-10931. PubMed ID: 30285415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow-Power and Radiation-Tolerant Complementary Metal-Oxide-Semiconductor Electronics Utilizing Enhancement-Mode Carbon Nanotube Transistors on Paper Substrates.
    Wang X; Zhu M; Li X; Qin Z; Lu G; Zhao J; Zhang Z
    Adv Mater; 2022 Oct; 34(40):e2204066. PubMed ID: 36030367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-Strong Comprehensive Radiation Effect Tolerance in Carbon Nanotube Electronics.
    Zhu M; Lu P; Wang X; Chen Q; Zhu H; Zhang Y; Zhou J; Xu H; Han Z; Han J; Chen R; Li B; Peng LM; Zhang Z
    Small; 2023 Jan; 19(1):e2204537. PubMed ID: 36366937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteresis-Free Carbon Nanotube Field-Effect Transistors.
    Park RS; Hills G; Sohn J; Mitra S; Shulaker MM; Wong HP
    ACS Nano; 2017 May; 11(5):4785-4791. PubMed ID: 28463503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modern microprocessor built from complementary carbon nanotube transistors.
    Hills G; Lau C; Wright A; Fuller S; Bishop MD; Srimani T; Kanhaiya P; Ho R; Amer A; Stein Y; Murphy D; Arvind ; Chandrakasan A; Shulaker MM
    Nature; 2019 Aug; 572(7771):595-602. PubMed ID: 31462796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-Hard and Repairable Complementary Metal-Oxide-Semiconductor Circuits Integrating n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors.
    Luo M; Zhu M; Wei M; Shao S; Robin M; Wei C; Cui Z; Zhao J; Zhang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49963-49970. PubMed ID: 33095560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube circuit integration up to sub-20 nm channel lengths.
    Shulaker MM; Van Rethy J; Wu TF; Liyanage LS; Wei H; Li Z; Pop E; Gielen G; Wong HS; Mitra S
    ACS Nano; 2014 Apr; 8(4):3434-43. PubMed ID: 24654597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power optimized variation aware dual-threshold SRAM cell design technique.
    Islam A; Hasan M
    Nanotechnol Sci Appl; 2011; 4():25-33. PubMed ID: 24198484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al(2)O(3) for sensor applications.
    Helbling T; Hierold C; Roman C; Durrer L; Mattmann M; Bright VM
    Nanotechnology; 2009 Oct; 20(43):434010. PubMed ID: 19801765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.
    McMorrow JJ; Cress CD; Gaviria Rojas WA; Geier ML; Marks TJ; Hersam MC
    ACS Nano; 2017 Mar; 11(3):2992-3000. PubMed ID: 28212000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.
    Ghavami B; Raji M; Pedram H
    Nanotechnology; 2011 Aug; 22(34):345706. PubMed ID: 21811011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of carbon-nanotube-based single-electron memories.
    Marty L; Bonnot AM; Bonhomme A; Iaia A; Naud C; André E; Bouchiat V
    Small; 2006 Jan; 2(1):110-5. PubMed ID: 17193565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High speed capacitor-inverter based carbon nanotube full adder.
    Navi K; Rashtian M; Khatir A; Keshavarzian P; Hashemipour O
    Nanoscale Res Lett; 2010 Mar; 5(5):859-62. PubMed ID: 20671796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear increases in carbon nanotube density through multiple transfer technique.
    Shulaker MM; Wei H; Patil N; Provine J; Chen HY; Wong HS; Mitra S
    Nano Lett; 2011 May; 11(5):1881-6. PubMed ID: 21469727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.
    Suriyasena Liyanage L; Xu X; Pitner G; Bao Z; Wong HS
    Nano Lett; 2014; 14(4):1884-90. PubMed ID: 24628497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges.
    Moriyama N; Ohno Y; Kitamura T; Kishimoto S; Mizutani T
    Nanotechnology; 2010 Apr; 21(16):165201. PubMed ID: 20348598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of carbon nanotube- and graphene-based flexible thin-film transistors.
    Sun DM; Liu C; Ren WC; Cheng HM
    Small; 2013 Apr; 9(8):1188-205. PubMed ID: 23519953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of Cr adhesion layer on CNFET electrical characteristics.
    Liu W; Chikkadi K; Muoth M; Hierold C; Haluska M
    Nanotechnology; 2016 Jan; 27(1):015201. PubMed ID: 26596783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.