BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34704450)

  • 1. Image Processing and Machine Learning for Automated Identification of Chemo-/Biomarkers in Chromatography-Mass Spectrometry.
    Jirayupat C; Nagashima K; Hosomi T; Takahashi T; Tanaka W; Samransuksamer B; Zhang G; Liu J; Kanai M; Yanagida T
    Anal Chem; 2021 Nov; 93(44):14708-14715. PubMed ID: 34704450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated optimization of XCMS parameters for improved peak picking of liquid chromatography-mass spectrometry data using the coefficient of variation and parameter sweeping for untargeted metabolomics.
    Manier SK; Keller A; Meyer MR
    Drug Test Anal; 2019 Jun; 11(6):752-761. PubMed ID: 30479047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) Data Processing.
    DeFelice BC; Mehta SS; Samra S; Čajka T; Wancewicz B; Fahrmann JF; Fiehn O
    Anal Chem; 2017 Mar; 89(6):3250-3255. PubMed ID: 28225594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of XCMS Optimization Methods with Machine-Learning Performance.
    Lassen J; Nielsen KL; Johannsen M; Villesen P
    Anal Chem; 2021 Oct; 93(40):13459-13466. PubMed ID: 34585906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery.
    Coble JB; Fraga CG
    J Chromatogr A; 2014 Sep; 1358():155-64. PubMed ID: 25063004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC-MS metabolomics data.
    Chetnik K; Petrick L; Pandey G
    Metabolomics; 2020 Oct; 16(11):117. PubMed ID: 33085002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IPO: a tool for automated optimization of XCMS parameters.
    Libiseller G; Dvorzak M; Kleb U; Gander E; Eisenberg T; Madeo F; Neumann S; Trausinger G; Sinner F; Pieber T; Magnes C
    BMC Bioinformatics; 2015 Apr; 16():118. PubMed ID: 25888443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data.
    Davidson RL; Weber RJ; Liu H; Sharma-Oates A; Viant MR
    Gigascience; 2016; 5():10. PubMed ID: 26913198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data.
    Borgsmüller N; Gloaguen Y; Opialla T; Blanc E; Sicard E; Royer AL; Le Bizec B; Durand S; Migné C; Pétéra M; Pujos-Guillot E; Giacomoni F; Guitton Y; Beule D; Kirwan J
    Metabolites; 2019 Aug; 9(9):. PubMed ID: 31438611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Understanding of the Discrepancies between Common Peak Picking Algorithms in Liquid Chromatography-Mass Spectrometry-Based Metabolomics.
    Guo J; Huan T
    Anal Chem; 2023 Apr; 95(14):5894-5902. PubMed ID: 36972195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis.
    Rafiei A; Sleno L
    Rapid Commun Mass Spectrom; 2015 Jan; 29(1):119-27. PubMed ID: 25462372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G-Aligner: a graph-based feature alignment method for untargeted LC-MS-based metabolomics.
    Wang R; Lu M; An S; Wang J; Yu C
    BMC Bioinformatics; 2023 Nov; 24(1):431. PubMed ID: 37964228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing XCMS parameters for GC-MS metabolomics data processing: a case study.
    Dos Santos EKP; Canuto GAB
    Metabolomics; 2023 Mar; 19(4):26. PubMed ID: 36976375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Assisted Peak Curation for Large-Scale LC-MS Metabolomics.
    Gloaguen Y; Kirwan JA; Beule D
    Anal Chem; 2022 Mar; 94(12):4930-4937. PubMed ID: 35290737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics.
    Bonini P; Kind T; Tsugawa H; Barupal DK; Fiehn O
    Anal Chem; 2020 Jun; 92(11):7515-7522. PubMed ID: 32390414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of XCMS parameters for LC-MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results.
    Albóniga OE; González O; Alonso RM; Xu Y; Goodacre R
    Metabolomics; 2020 Jan; 16(1):14. PubMed ID: 31925557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC/MS-Based Metabolomics.
    Domingo-Almenara X; Brezmes J; Vinaixa M; Samino S; Ramirez N; Ramon-Krauel M; Lerin C; Díaz M; Ibáñez L; Correig X; Perera-Lluna A; Yanes O
    Anal Chem; 2016 Oct; 88(19):9821-9829. PubMed ID: 27584001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SimExTargId: a comprehensive package for real-time LC-MS data acquisition and analysis.
    Edmands WMB; Hayes J; Rappaport SM
    Bioinformatics; 2018 Oct; 34(20):3589-3590. PubMed ID: 29790936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-MSNet: a point cloud-based deep learning model for untargeted feature detection and quantification in profile LC-HRMS data.
    Wang R; Lu M; An S; Wang J; Yu C
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37071700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed Investigation and Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data.
    Myers OD; Sumner SJ; Li S; Barnes S; Du X
    Anal Chem; 2017 Sep; 89(17):8689-8695. PubMed ID: 28752757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.