These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 34704849)
1. Print-and-Spray Electromechanical Metamaterials. Min T; Cheong E; Lee C; Park D; Kim B; Rodrigue H; Koh JS; Lee D Soft Robot; 2022 Oct; 9(5):882-888. PubMed ID: 34704849 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL). Wang Y; Li X; Fan S; Feng X; Cao K; Ge Q; Gao L; Lu Y ACS Appl Mater Interfaces; 2021 Feb; 13(7):8901-8908. PubMed ID: 33587597 [TBL] [Abstract][Full Text] [Related]
3. Printed Transformable Liquid-Metal Metamaterials and Their Application in Biomedical Sensing. Ren Y; Duan M; Guo R; Liu J Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640647 [TBL] [Abstract][Full Text] [Related]
7. Design and Print Terahertz Metamaterials Based on Electrohydrodynamic Jet. Yang T; Li X; Yu B; Gong C Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985066 [TBL] [Abstract][Full Text] [Related]
8. Novel 4D-printed multi-stable metamaterials: programmability of force-displacement behaviour and deformation sequence. Wan M; Yu K; Zeng H; Khatibi AA; Yin M; Sun H Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230366. PubMed ID: 39069761 [TBL] [Abstract][Full Text] [Related]
9. 3D printing of complex origami assemblages for reconfigurable structures. Zhao Z; Kuang X; Wu J; Zhang Q; Paulino GH; Qi HJ; Fang D Soft Matter; 2018 Oct; 14(39):8051-8059. PubMed ID: 30255916 [TBL] [Abstract][Full Text] [Related]
10. Liquid Metal-Polymer Microlattice Metamaterials with High Fracture Toughness and Damage Recoverability. Zhang W; Chen J; Li X; Lu Y Small; 2020 Nov; 16(46):e2004190. PubMed ID: 33103341 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network. Duan S; Yang K; Wang Z; Chen M; Zhang L; Zhang H; Li C ACS Appl Mater Interfaces; 2016 Jan; 8(3):2187-92. PubMed ID: 26713456 [TBL] [Abstract][Full Text] [Related]
12. Highly Stretchable and Durable Conductive Knitted Fabrics for the Skins of Soft Robots. Pei Z; Xiong X; He J; Zhang Y Soft Robot; 2019 Dec; 6(6):687-700. PubMed ID: 31216237 [TBL] [Abstract][Full Text] [Related]
13. Mechanically driven strategies to improve electromechanical behaviour of printed stretchable electronic systems. Di Vito D; Mosallaei M; Khorramdel B; Kanerva M; Mäntysalo M Sci Rep; 2020 Jul; 10(1):12037. PubMed ID: 32694563 [TBL] [Abstract][Full Text] [Related]
14. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. Wang C; Zhang M; Xia K; Gong X; Wang H; Yin Z; Guan B; Zhang Y ACS Appl Mater Interfaces; 2017 Apr; 9(15):13331-13338. PubMed ID: 28345872 [TBL] [Abstract][Full Text] [Related]
15. Electromechanical tensile test equipment for stretchable conductive materials. Wiranata A; Ohsugi Y; Minaminosono A; Kuwajima Y; Maeda S HardwareX; 2022 Apr; 11():e00287. PubMed ID: 35509934 [TBL] [Abstract][Full Text] [Related]
16. High-Efficiency Large-Area Printed Multilayer Liquid Metal Wires for Stretchable Biomedical Sensors with Recyclability. Li G; Sun F; Chen H; Jin Y; Zhang A; Du J ACS Appl Mater Interfaces; 2021 Dec; 13(48):56961-56971. PubMed ID: 34802230 [TBL] [Abstract][Full Text] [Related]
17. 3D printed microstructures for flexible electronic devices. Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596 [TBL] [Abstract][Full Text] [Related]