BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34705495)

  • 1. Brain inflammation triggers macrophage invasion across the blood-brain barrier in
    Winkler B; Funke D; Benmimoun B; Spéder P; Rey S; Logan MA; Klämbt C
    Sci Adv; 2021 Oct; 7(44):eabh0050. PubMed ID: 34705495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral immune surveillance: Toward a TH17/TH9 gate to the central nervous system.
    Barkhordarian A; Thames AD; Du AM; Jan AL; Nahcivan M; Nguyen MT; Sama N; Chiappelli F
    Bioinformation; 2015; 11(1):47-54. PubMed ID: 25780281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of T-cell-mediated mechanisms in virus infections of the nervous system.
    Dörries R
    Curr Top Microbiol Immunol; 2001; 253():219-45. PubMed ID: 11417137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial-Host Interactions Facilitate the Bacterial Pathogen Invading the Brain.
    Al-Obaidi MMJ; Desa MNM
    Cell Mol Neurobiol; 2018 Oct; 38(7):1349-1368. PubMed ID: 30117097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zika Virus Infection Promotes Local Inflammation, Cell Adhesion Molecule Upregulation, and Leukocyte Recruitment at the Blood-Brain Barrier.
    Clé M; Desmetz C; Barthelemy J; Martin MF; Constant O; Maarifi G; Foulongne V; Bolloré K; Glasson Y; De Bock F; Blaquiere M; Dehouck L; Pirot N; Tuaillon E; Nisole S; Najioullah F; Van de Perre P; Cabié A; Marchi N; Gosselet F; Simonin Y; Salinas S
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human CD4
    Nishihara H; Soldati S; Mossu A; Rosito M; Rudolph H; Muller WA; Latorre D; Sallusto F; Sospedra M; Martin R; Ishikawa H; Tenenbaum T; Schroten H; Gosselet F; Engelhardt B
    Fluids Barriers CNS; 2020 Feb; 17(1):3. PubMed ID: 32008573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of Carbohydrate Transport at the Blood-Brain Barrier.
    McMullen E; Weiler A; Becker HM; Schirmeier S
    Front Behav Neurosci; 2020; 14():612430. PubMed ID: 33551766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The blood-brain barrier and its role in immune privilege in the central nervous system.
    Pachter JS; de Vries HE; Fabry Z
    J Neuropathol Exp Neurol; 2003 Jun; 62(6):593-604. PubMed ID: 12834104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial diversity of blood-brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study.
    Ladewig G; Jestaedt L; Misselwitz B; Solymosi L; Toyka K; Bendszus M; Stoll G
    Exp Neurol; 2009 Nov; 220(1):207-11. PubMed ID: 19733560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond immunity: The Imd pathway as a coordinator of host defense, organismal physiology and behavior.
    Zhai Z; Huang X; Yin Y
    Dev Comp Immunol; 2018 Jun; 83():51-59. PubMed ID: 29146454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central Nervous System Barriers Impact Distribution and Expression of iNOS and Arginase-1 in Infiltrating Macrophages During Neuroinflammation.
    Ivan DC; Walthert S; Locatelli G
    Front Immunol; 2021; 12():666961. PubMed ID: 33936108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage.
    Berger C; Hiestand P; Kindler-Baumann D; Rudin M; Rausch M
    NMR Biomed; 2006 Feb; 19(1):101-7. PubMed ID: 16411166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steroid Hormone Entry into the Brain Requires a Membrane Transporter in Drosophila.
    Okamoto N; Yamanaka N
    Curr Biol; 2020 Jan; 30(2):359-366.e3. PubMed ID: 31928869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Drosophila blood-brain barrier as interface between neurons and hemolymph.
    Schirmeier S; Klämbt C
    Mech Dev; 2015 Nov; 138 Pt 1():50-5. PubMed ID: 26103549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and functional analysis of immune deficiency (IMD) from Scylla paramamosain: The first evidence of IMD signaling pathway involved in immune defense against bacterial infection in crab species.
    Zhou YL; Wang LZ; Gu WB; Wang C; Zhu QH; Liu ZP; Chen YY; Shu MA
    Fish Shellfish Immunol; 2018 Oct; 81():150-160. PubMed ID: 30017928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Drosophila imd signaling pathway.
    Myllymäki H; Valanne S; Rämet M
    J Immunol; 2014 Apr; 192(8):3455-62. PubMed ID: 24706930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke.
    Lopes Pinheiro MA; Kooij G; Mizee MR; Kamermans A; Enzmann G; Lyck R; Schwaninger M; Engelhardt B; de Vries HE
    Biochim Biophys Acta; 2016 Mar; 1862(3):461-71. PubMed ID: 26527183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passage of parasites across the blood-brain barrier.
    Masocha W; Kristensson K
    Virulence; 2012; 3(2):202-12. PubMed ID: 22460639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection.
    Zhai Z; Boquete JP; Lemaitre B
    Immunity; 2018 May; 48(5):897-910.e7. PubMed ID: 29752064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.
    Levite M
    J Neural Transm (Vienna); 2014 Aug; 121(8):1029-75. PubMed ID: 25081016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.