BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34705593)

  • 1. The early development and physiology of
    Saccomanno V; Love H; Sylvester A; Li WC
    J Neurophysiol; 2021 Nov; 126(5):1814-1830. PubMed ID: 34705593
    [No Abstract]   [Full Text] [Related]  

  • 2. Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands.
    Lunsford ET; Skandalis DA; Liao JC
    J Neurophysiol; 2019 Dec; 122(6):2438-2448. PubMed ID: 31642405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence of multisensory inputs in Xenopus tadpole tectum.
    Hiramoto M; Cline HT
    Dev Neurobiol; 2009 Dec; 69(14):959-71. PubMed ID: 19813244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making.
    Buhl E; Soffe SR; Roberts A
    J Physiol; 2015 Oct; 593(19):4423-37. PubMed ID: 26138033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The modulation of two motor behaviors by persistent sodium currents in
    Svensson E; Jeffreys H; Li WC
    J Neurophysiol; 2017 Jul; 118(1):121-130. PubMed ID: 28331009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of hatchling Xenopus tadpoles to water currents: first function of lateral line receptors without cupulae.
    Roberts A; Feetham B; Pajak M; Teare T
    J Exp Biol; 2009 Apr; 212(Pt 7):914-21. PubMed ID: 19282488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy.
    Liao JC; Haehnel M
    J Neurophysiol; 2012 May; 107(10):2615-23. PubMed ID: 22338025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stopping response of Xenopus laevis embryos: behaviour, development and physiology.
    Boothby KM; Roberts A
    J Comp Physiol A; 1992 Feb; 170(2):171-80. PubMed ID: 1583603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing
    Ferrario A; Saccomanno V; Zhang HY; Borisyuk R; Li WC
    J Neurosci; 2023 Feb; 43(8):1387-1404. PubMed ID: 36693757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal corollary discharge modulates motion sensing during vertebrate locomotion.
    Chagnaud BP; Banchi R; Simmers J; Straka H
    Nat Commun; 2015 Sep; 6():7982. PubMed ID: 26337184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetries in sensory pathways from skin to motoneurons on each side of the body determine the direction of an avoidance response in hatchling Xenopus tadpoles.
    Zhao FY; Burton BG; Wolf E; Roberts A
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):471-87. PubMed ID: 9490873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visually mediated inhibition of lateral line primary afferent activity by the octavolateralis efferent system during predation in the free-swimming toadfish, Opsanus tau.
    Tricas TC; Highstein SM
    Exp Brain Res; 1990; 83(1):233-6. PubMed ID: 2073946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.
    Hänzi S; Straka H
    J Exp Biol; 2017 Jan; 220(Pt 2):227-236. PubMed ID: 27811303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish.
    Haehnel-Taguchi M; Akanyeti O; Liao JC
    J Neurophysiol; 2014 Sep; 112(6):1329-39. PubMed ID: 24966296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.