These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34705593)

  • 21. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times.
    Koutsikou S; Merrison-Hort R; Buhl E; Ferrario A; Li WC; Borisyuk R; Soffe SR; Roberts A
    J Physiol; 2018 Dec; 596(24):6219-6233. PubMed ID: 30074236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles.
    Currie SP; Sillar KT
    J Neurophysiol; 2018 Mar; 119(3):786-795. PubMed ID: 29142093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis.
    Roberts A; Hill NA; Hicks R
    J Exp Biol; 2000 Jun; 203(Pt 12):1869-85. PubMed ID: 10821744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscarinic modulation of the Xenopus laevis tadpole spinal mechanosensory pathway.
    Porter NJ; Li WC
    Brain Res Bull; 2018 May; 139():278-284. PubMed ID: 29601952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line.
    Olszewski J; Haehnel M; Taguchi M; Liao JC
    PLoS One; 2012; 7(5):e36661. PubMed ID: 22570735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau.
    Tricas TC; Highstein SM
    J Comp Physiol A; 1991 Jul; 169(1):25-37. PubMed ID: 1941716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pattern of sensory discharge can determine the motor response in young Xenopus tadpoles.
    Soffe SR
    J Comp Physiol A; 1997 Jun; 180(6):711-5. PubMed ID: 9190047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ.
    Sewell WF; Starr PA
    J Neurophysiol; 1991 May; 65(5):1158-69. PubMed ID: 1651373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An early midbrain sensorimotor pathway is involved in the timely initiation and direction of swimming in the hatchling
    Larbi MC; Messa G; Jalal H; Koutsikou S
    Front Neural Circuits; 2022; 16():1027831. PubMed ID: 36619662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adrenoreceptor-mediated modulation of the spinal locomotor pattern during swimming in Xenopus laevis tadpoles.
    Fischer H; Merrywest SD; Sillar KT
    Eur J Neurosci; 2001 Mar; 13(5):977-86. PubMed ID: 11264670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From decision to action: Detailed modelling of frog tadpoles reveals neuronal mechanisms of decision-making and reproduces unpredictable swimming movements in response to sensory signals.
    Ferrario A; Palyanov A; Koutsikou S; Li W; Soffe S; Roberts A; Borisyuk R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009654. PubMed ID: 34898604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms and significance of reduced activity and responsiveness in resting frog tadpoles.
    Lambert TD; Howard J; Plant A; Soffe S; Roberts A
    J Exp Biol; 2004 Mar; 207(Pt 7):1113-25. PubMed ID: 14978054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Copper on the Neuromasts of Xenopus Laevis.
    Krupa PM; McMurry ST; Minghetti M; Belden JB
    Arch Environ Contam Toxicol; 2021 May; 80(4):769-778. PubMed ID: 33180147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.
    Fournier S; Dubé PL; Kinkead R
    J Exp Biol; 2012 Apr; 215(Pt 7):1144-50. PubMed ID: 22399659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lateral line units in the amphibian brain could integrate wave curvatures.
    Behrend O; Branoner F; Ziehm U; Zhivkov Z
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Aug; 194(8):777-83. PubMed ID: 18633622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of young Xenopus laevis tadpoles to light dimming: possible roles for the pineal eye.
    Jamieson D; Roberts A
    J Exp Biol; 2000 Jun; 203(Pt 12):1857-67. PubMed ID: 10821743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.