BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34705842)

  • 1. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam.
    Javier-Astete R; Jimenez-Davalos J; Zolla G
    PLoS One; 2021; 16(10):e0256559. PubMed ID: 34705842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Amazonian fast-growing tree species and wood chemical determination by FTIR and multivariate analysis (PLS-DA, PLS).
    Javier-Astete R; Melo J; Jimenez-Davalos J; Zolla G
    Sci Rep; 2023 May; 13(1):7827. PubMed ID: 37188729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions.
    Pizzo B; Pecoraro E; Alves A; Macchioni N; Rodrigues JC
    Talanta; 2015 Jan; 131():14-20. PubMed ID: 25281067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of holocellulose and lignin content in Chinese fir by near infrared spectroscopy].
    Huang AM; Jiang ZH; Li GY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1328-31. PubMed ID: 17944406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in
    Ai N; Jiang Y; Omar S; Wang J; Xia L; Ren J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [FTIR studies of masson pine wood decayed by brown-rot fungi].
    Li GY; Huang AM; Qin TF; Huang LH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2133-6. PubMed ID: 20939323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.
    Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D
    J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid determination of lignin content of straw using fourier transform mid-infrared spectroscopy.
    Tamaki Y; Mazza G
    J Agric Food Chem; 2011 Jan; 59(2):504-12. PubMed ID: 21175187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of mixed hardwood lignin and carbohydrate content using ATR-FTIR and FT-NIR.
    Zhou C; Jiang W; Via BK; Fasina O; Han G
    Carbohydr Polym; 2015 May; 121():336-41. PubMed ID: 25659707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of hot-water-soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy.
    He W; Hu H
    Bioresour Technol; 2013 Jul; 140():299-305. PubMed ID: 23711938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of multivariate NMR analysis in the content prediction of hemicellulose, cellulose and lignin in greenhouse crop residues.
    Aguilera-Sáez LM; Arrabal-Campos FM; Callejón-Ferre ÁJ; Suárez Medina MD; Fernández I
    Phytochemistry; 2019 Feb; 158():110-119. PubMed ID: 30502594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating the degradation of green plant waste with chemical decomposition agents.
    Kejun S; Juntao Z; Ying C; Zongwen L; Lin R; Cong L
    J Environ Manage; 2011 Oct; 92(10):2708-13. PubMed ID: 21763065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].
    Du J; An D; Xia T; Huang YH; Li HC; Zhang YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3207-11. PubMed ID: 24611371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared studies of heterogeneity, photodegradation, and lignin/hemicellulose ratios within hardwoods and softwoods.
    Orton CR; Parkinson DY; Evans PD; Owen NL
    Appl Spectrosc; 2004 Nov; 58(11):1265-71. PubMed ID: 15606929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees.
    Garcia-Maraver A; Salvachúa D; Martínez MJ; Diaz LF; Zamorano M
    Waste Manag; 2013 Nov; 33(11):2245-9. PubMed ID: 23916844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS).
    Assis C; Ramos RS; Silva LA; Kist V; Barbosa MHP; Teófilo RF
    Appl Spectrosc; 2017 Aug; 71(8):2001-2012. PubMed ID: 28452227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review.
    Le Floch A; Jourdes M; Teissedre PL
    Carbohydr Res; 2015 Nov; 417():94-102. PubMed ID: 26454166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical alterations of pine wood saccharides during heat sterilisation.
    Kačík F; Šmíra P; Kačíková D; Veľková V; Nasswettrová A; Vacek V
    Carbohydr Polym; 2015 Mar; 117():681-686. PubMed ID: 25498688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The decomposition of wood products in landfills in Sydney, Australia.
    Ximenes FA; Gardner WD; Cowie AL
    Waste Manag; 2008 Nov; 28(11):2344-54. PubMed ID: 18178075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.
    Reyes-Rivera J; Canché-Escamilla G; Soto-Hernández M; Terrazas T
    PLoS One; 2015; 10(4):e0123919. PubMed ID: 25880223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.