BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34705842)

  • 21. A new method to quantitatively evaluate the chemical composition of waterlogged wood by means of attenuated total reflectance Fourier transform infrared (ATR FT-IR) measurements carried out on wet material.
    Pizzo B; Pecoraro E; Macchioni N
    Appl Spectrosc; 2013 May; 67(5):553-62. PubMed ID: 23643045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of near-infrared spectroscopy for on-line grading of sawn lumber.
    Fujimoto T; Kurata Y; Matsumoto K; Tsuchikawa S
    Appl Spectrosc; 2010 Jan; 64(1):92-9. PubMed ID: 20132603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid detection of cellulose and hemicellulose contents of corn stover based on near-infrared spectroscopy combined with chemometrics.
    Wang N; Li L; Liu J; Shi J; Lu Y; Zhang B; Sun Y; Li W
    Appl Opt; 2021 May; 60(15):4282-4290. PubMed ID: 34143114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy.
    Wittner N; Slezsák J; Broos W; Geerts J; Gergely S; Vlaeminck SE; Cornet I
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121912. PubMed ID: 36174400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.
    Szymanska-Chargot M; Chylinska M; Kruk B; Zdunek A
    Carbohydr Polym; 2015 Jan; 115():93-103. PubMed ID: 25439873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis.
    Jin X; Chen X; Shi C; Li M; Guan Y; Yu CY; Yamada T; Sacks EJ; Peng J
    Bioresour Technol; 2017 Oct; 241():603-609. PubMed ID: 28601778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignin Analysis by HPLC and FTIR.
    Reyes-Rivera J; Terrazas T
    Methods Mol Biol; 2017; 1544():193-211. PubMed ID: 28050837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lignin Analysis by HPLC and FTIR: Spectra Deconvolution and S/G Ratio Determination.
    Reyes-Rivera J; Terrazas T
    Methods Mol Biol; 2024; 2722():149-169. PubMed ID: 37897607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The potential of Mid-Infrared spectroscopy for prediction of wood density and vulnerability to embolism in woody angiosperms.
    Savi T; Tintner J; Da Sois L; Grabner M; Petit G; Rosner S
    Tree Physiol; 2019 Mar; 39(3):503-510. PubMed ID: 30307571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of FTIR spectroscopy to the characterization of archeological wood.
    Traoré M; Kaal J; Martínez Cortizas A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():63-70. PubMed ID: 26291671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fourier transform infrared quantitative analysis of sugars and lignin in pretreated softwood solid residues.
    Tucker MP; Nguyen QA; Eddy FP; Kadam KL; Gedvilas LM; Webb JD
    Appl Biochem Biotechnol; 2001; 91-93():51-61. PubMed ID: 11963880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy.
    Li X; Sun C; Zhou B; He Y
    Sci Rep; 2015 Nov; 5():17210. PubMed ID: 26601657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pleurotus ostreatus decreases cornstalk lignin content, potentially improving its suitability for animal feed.
    Chen Y; Fan H; Meng F
    J Sci Food Agric; 2017 Mar; 97(5):1592-1598. PubMed ID: 27417952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry.
    Özgenç Ö; Durmaz S; Boyaci IH; Eksi-Kocak H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():395-400. PubMed ID: 27569772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Prediction of Cellulose, Hemicellulose, Lignin and Ash Content of Four Miscanthus Bio-Energy Crops Using Near-Infrared Spectroscopy].
    Li XN; Fan XF; Wu JY; Zhang GF; Liu SY; Wu MJ; Cheng YB; Zhang N
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):64-9. PubMed ID: 27228742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy.
    Bekiaris G; Triolo JM; Peltre C; Pedersen L; Jensen LS; Bruun S
    Bioresour Technol; 2015 Dec; 197():475-81. PubMed ID: 26369276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy.
    Hou S; Li L
    J Integr Plant Biol; 2011 Feb; 53(2):166-75. PubMed ID: 21261813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Determination of main fiber compositions of alfalfa hay by near infrared reflectance spectroscopy].
    Nie ZD; Han JG; Yu Z; Zhong Y; Liu FY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1045-8. PubMed ID: 18720798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars.
    Zhou G; Taylor G; Polle A
    Plant Methods; 2011 Apr; 7():9. PubMed ID: 21477346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.