These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34706112)

  • 21. Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells.
    Lee SS; Abbaspourrad A; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1294-300. PubMed ID: 24381982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-step generation of monodisperse agarose-solidified double emulsions (w/w/o) excluding an inner oil barrier.
    Brinkmann S; Oberpaul M; Glaeser J; Schäberle TF
    MethodsX; 2021; 8():101565. PubMed ID: 35004199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalable production of double emulsion drops with thin shells.
    Vian A; Reuse B; Amstad E
    Lab Chip; 2018 Jun; 18(13):1936-1942. PubMed ID: 29881836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Simple Non-Embedded Single Capillary Device for On-Demand Complex Emulsion Formation.
    Karim Khani MM; Oveysi M; Bazargan V; Marengo M
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of double-emulsion droplets with ESI mass spectrometry for monitoring lipase-catalyzed ester hydrolysis at nanoliter scale.
    Heiligenthal L; van der Loh M; Polack M; Blaha ME; Moschütz S; Keim A; Sträter N; Belder D
    Anal Bioanal Chem; 2022 Sep; 414(23):6977-6987. PubMed ID: 35995875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.
    Chen L; Xiao Y; Wu Q; Yan X; Zhao P; Ruan J; Shan J; Chen D; Weitz DA; Ye F
    Small; 2021 Oct; 17(39):e2102579. PubMed ID: 34390183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional polymeric microparticles engineered from controllable microfluidic emulsions.
    Wang W; Zhang MJ; Chu LY
    Acc Chem Res; 2014 Feb; 47(2):373-84. PubMed ID: 24199893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the emulsion components and preparation method on the laboratory-scale preparation of o/w emulsions containing different types of dispersed phases and/or emulsifiers.
    Einhorn-Stoll U; Weiss M; Kunzek H
    Nahrung; 2002 Aug; 46(4):294-301. PubMed ID: 12224428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous fabrication of core-shell aerogel microparticles using microfluidic flows.
    Teo N; Jin C; Kulkarni A; Jana SC
    J Colloid Interface Sci; 2020 Mar; 561():772-781. PubMed ID: 31761464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices.
    Jans A; Lölsberg J; Omidinia-Anarkoli A; Viermann R; Möller M; De Laporte L; Wessling M; Kuehne AJC
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31731709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of emulsification process on the properties of Pickering emulsions stabilized by layered double hydroxide particles.
    Zhang N; Zhang L; Sun D
    Langmuir; 2015 Apr; 31(16):4619-26. PubMed ID: 25853297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design automation of microfluidic single and double emulsion droplets with machine learning.
    Lashkaripour A; McIntyre DP; Calhoun SGK; Krauth K; Densmore DM; Fordyce PM
    Nat Commun; 2024 Jan; 15(1):83. PubMed ID: 38167827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials.
    Ribeiro de Souza L; Al-Tabbaa A
    Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.
    Ito T; Tsuji Y; Aramaki K; Tonooka N
    J Oleo Sci; 2012; 61(8):413-20. PubMed ID: 22864511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition.
    Trantidou T; Elani Y; Parsons E; Ces O
    Microsyst Nanoeng; 2017; 3():16091. PubMed ID: 31057854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets.
    Akamatsu K; Kanasugi S; Nakao S; Weitz DA
    Langmuir; 2015 Jun; 31(25):7166-72. PubMed ID: 26057203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Microfiber-Templated Microfluidic Chips with Microfibrous Channels for High Throughput and Continuous Production of Nanoscale Droplets.
    Ahn GY; Choi I; Song M; Han SK; Choi K; Ryu YH; Oh DH; Kang HW; Choi SW
    ACS Macro Lett; 2022 Jan; 11(1):127-134. PubMed ID: 35574793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.