These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34706196)

  • 1. Effect of Organic Solvents on the Structure and Activity of a Minimal Lipase.
    Ingenbosch KN; Vieyto-Nuñez JC; Ruiz-Blanco YB; Mayer C; Hoffmann-Jacobsen K; Sanchez-Garcia E
    J Org Chem; 2022 Feb; 87(3):1669-1678. PubMed ID: 34706196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DMSO enhanced conformational switch of an interfacial enzyme.
    Lindsay RJ; Johnson QR; Evangelista W; Nellas RB; Shen T
    Biopolymers; 2016 Dec; 105(12):864-72. PubMed ID: 27463323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Organic Solvents on Porcine Pancreatic Lipase Thermal Aggregation.
    Vaezzadeh M; Sabbaghian M; Yaghmaei P; Ebrahim-Habibi A
    Protein Pept Lett; 2017; 24(10):955-961. PubMed ID: 28741463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments.
    Shehata M; Timucin E; Venturini A; Sezerman OU
    J Mol Model; 2020 May; 26(6):122. PubMed ID: 32383051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.
    Almandoz MC; Sancho MI; Blanco SE
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():112-9. PubMed ID: 24044989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the loops in a lipase for stability in DMSO.
    Yedavalli P; Rao NM
    Protein Eng Des Sel; 2013 Apr; 26(4):317-24. PubMed ID: 23404771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.
    Castillo E; Pezzotti F; Navarro A; López-Munguía A
    J Biotechnol; 2003 May; 102(3):251-9. PubMed ID: 12730008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polar Substitutions on the Surface of a Lipase Substantially Improve Tolerance in Organic Solvents.
    Cui H; Vedder M; Zhang L; Jaeger KE; Schwaneberg U; Davari MD
    ChemSusChem; 2022 May; 15(9):e202102551. PubMed ID: 35007408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the rationale behind organic solvent stability of lipases.
    Chakravorty D; Parameswaran S; Dubey VK; Patra S
    Appl Biochem Biotechnol; 2012 Jun; 167(3):439-61. PubMed ID: 22562495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dimethylsulfoxide on hydrolysis of lipase.
    Tsuzuki W; Ue A; Kitamura Y
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2078-82. PubMed ID: 11676024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipase-catalyzed cellulose acetylation in aqueous and organic media.
    Yang K; Wang YJ
    Biotechnol Prog; 2003; 19(6):1664-71. PubMed ID: 14656139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the structural properties of the active conformation BTL2 of a lipase from Geobacillus thermocatenulatus in toluene using molecular dynamic simulations and engineering BTL2 via in-silico mutation.
    Yenenler A; Venturini A; Burduroglu HC; Sezerman OU
    J Mol Model; 2018 Aug; 24(9):229. PubMed ID: 30097767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase.
    Kuper J; Tee KL; Wilmanns M; Roccatano D; Schwaneberg U; Wong TS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Sep; 68(Pt 9):1013-7. PubMed ID: 22949185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural dynamics and mechanistic action guided engineering of lipolytic enzymes.
    Kumar R
    J Cell Biochem; 2023 Jun; 124(6):877-888. PubMed ID: 37087743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol.
    Gihaz S; Kanteev M; Pazy Y; Fishman A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic solvent tolerant lipases and applications.
    Sharma S; Kanwar SS
    ScientificWorldJournal; 2014; 2014():625258. PubMed ID: 24672342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation.
    Mohtashami M; Fooladi J; Haddad-Mashadrizeh A; Housaindokht MR; Monhemi H
    Int J Biol Macromol; 2019 Feb; 122():914-923. PubMed ID: 30445665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescence-based activity assay for immobilized lipases in non-native media.
    Ingenbosch KN; Rousek A; Wunschik DS; Hoffmann-Jacobsen K
    Anal Biochem; 2019 Mar; 569():22-27. PubMed ID: 30660589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molten globule-triggered inactivation of a thermostable and solvent stable lipase in hydrophilic solvents.
    Hamid TH; Rahman RN; Salleh AB; Basri M
    Protein J; 2010 May; 29(4):290-7. PubMed ID: 20509044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.