BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 34706221)

  • 21. Overexpression of Reticulon 3 Enhances CNS Axon Regeneration and Functional Recovery after Traumatic Injury.
    Alhajlah S; Thompson AM; Ahmed Z
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The transitional zone and CNS regeneration.
    Fraher JP
    J Anat; 1999 Feb; 194(Pt 2)(Pt 2):161-82. PubMed ID: 10337949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS.
    Tedeschi A; Dupraz S; Curcio M; Laskowski CJ; Schaffran B; Flynn KC; Santos TE; Stern S; Hilton BJ; Larson MJE; Gurniak CB; Witke W; Bradke F
    Neuron; 2019 Sep; 103(6):1073-1085.e6. PubMed ID: 31400829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The transitional zone and CNS regeneration.
    Fraher JP
    J Anat; 2000 Jan; 196 ( Pt 1)():137-58. PubMed ID: 10697296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal cord repair: strategies to promote axon regeneration.
    McKerracher L
    Neurobiol Dis; 2001 Feb; 8(1):11-8. PubMed ID: 11162236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can injured adult CNS axons regenerate by recapitulating development?
    Hilton BJ; Bradke F
    Development; 2017 Oct; 144(19):3417-3429. PubMed ID: 28974639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mTOR Substrate S6 Kinase 1 (S6K1) Is a Negative Regulator of Axon Regeneration and a Potential Drug Target for Central Nervous System Injury.
    Al-Ali H; Ding Y; Slepak T; Wu W; Sun Y; Martinez Y; Xu XM; Lemmon VP; Bixby JL
    J Neurosci; 2017 Jul; 37(30):7079-7095. PubMed ID: 28626016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury.
    Wang Z; Winsor K; Nienhaus C; Hess E; Blackmore MG
    Neurobiol Dis; 2017 Mar; 99():24-35. PubMed ID: 27988344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.
    Wu D; Klaw MC; Connors T; Kholodilov N; Burke RE; Tom VJ
    J Neurosci; 2015 Aug; 35(31):11068-80. PubMed ID: 26245968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of task-based rehabilitative training combined with PTEN/SOCS3 coinhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice.
    Pan L; Yi L; Liu Y; Liu L; Zhu Y; Zhong J; Wang Y; Yin Y; Yu L; Tan B; Yang C
    Neurosci Lett; 2023 Mar; 800():137121. PubMed ID: 36764478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Updates and challenges of axon regeneration in the mammalian central nervous system.
    Qian C; Zhou FQ
    J Mol Cell Biol; 2020 Oct; 12(10):798-806. PubMed ID: 32470988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining task-based rehabilitative training with PTEN inhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice.
    Pan L; Tan B; Tang W; Luo M; Liu Y; Yu L; Yin Y
    Behav Brain Res; 2021 May; 405():113197. PubMed ID: 33621609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System.
    Cooke P; Janowitz H; Dougherty SE
    Front Cell Neurosci; 2022; 16():872501. PubMed ID: 35530177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration.
    Khankan RR; Griffis KG; Haggerty-Skeans JR; Zhong H; Roy RR; Edgerton VR; Phelps PE
    J Neurosci; 2016 Jun; 36(23):6269-86. PubMed ID: 27277804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.
    Li P; Teng ZQ; Liu CM
    Neural Plast; 2016; 2016():1279051. PubMed ID: 27818801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models.
    Hutson TH; Kathe C; Palmisano I; Bartholdi K; Hervera A; De Virgiliis F; McLachlan E; Zhou L; Kong G; Barraud Q; Danzi MC; Medrano-Fernandez A; Lopez-Atalaya JP; Boutillier AL; Sinha SH; Singh AK; Chaturbedy P; Moon LDF; Kundu TK; Bixby JL; Lemmon VP; Barco A; Courtine G; Di Giovanni S
    Sci Transl Med; 2019 Apr; 11(487):. PubMed ID: 30971452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signaling pathways that regulate axon regeneration.
    Saijilafu ; Zhang BY; Zhou FQ
    Neurosci Bull; 2013 Aug; 29(4):411-20. PubMed ID: 23846598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intraneural Injection of ATP Stimulates Regeneration of Primary Sensory Axons in the Spinal Cord.
    Wu D; Lee S; Luo J; Xia H; Gushchina S; Richardson PM; Yeh J; Krügel U; Franke H; Zhang Y; Bo X
    J Neurosci; 2018 Feb; 38(6):1351-1365. PubMed ID: 29279307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximizing functional axon repair in the injured central nervous system: Lessons from neuronal development.
    Kaplan A; Bueno M; Hua L; Fournier AE
    Dev Dyn; 2018 Jan; 247(1):18-23. PubMed ID: 28643358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.