BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34706323)

  • 1. Shaped DNA origami carrier nanopore translocation influenced by aptamer based surface modification.
    Ding T; Yang J; Wang J; Pan V; Lu Z; Ke Y; Zhang C
    Biosens Bioelectron; 2022 Jan; 195():113658. PubMed ID: 34706323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation of Proteins through Solid-State Nanopores Using DNA Polyhedral Carriers.
    Yang J; Wang J; Liu X; Chen Y; Liang Y; Wang Q; Jiang S; Zhang C
    Small; 2023 Nov; 19(47):e2303715. PubMed ID: 37496044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-flexible DNA origami translocation through a solid-state nanopore.
    Yang J; Zhao N; Liang Y; Lu Z; Zhang C
    RSC Adv; 2021 Jul; 11(38):23471-23476. PubMed ID: 35479792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable DNA Nanoswitch Sensing with Solid-State Nanopores.
    Beamish E; Tabard-Cossa V; Godin M
    ACS Sens; 2019 Sep; 4(9):2458-2464. PubMed ID: 31449750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Aptamer-Based Nanopore Sensing at Single-Molecule Resolution.
    Lv P; Zhang W; Yang Y; Gao H; Li S; Tan CS; Ming D
    Chem Asian J; 2022 Aug; 17(16):e202200364. PubMed ID: 35644914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Molecule Identification of the Conformations of Human C-Reactive Protein and Its Aptamer Complex with Solid-State Nanopores.
    Wu J; Liang L; Zhang M; Zhu R; Wang Z; Yin Y; Yin B; Weng T; Fang S; Xie W; Wang L; Wang D
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12077-12088. PubMed ID: 35234028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Origami in the Quest for Membrane Piercing.
    Niranjan Dhanasekar N; Thiyagarajan D; Bhatia D
    Chem Asian J; 2022 Oct; 17(19):e202200591. PubMed ID: 35947734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation-Mediated Translocation of DNA Origami Nanoplates through a Narrow Solid-State Nanopore.
    Zhu L; Zhang Z; Liu Q
    Anal Chem; 2020 Oct; 92(19):13238-13245. PubMed ID: 32872775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA nanostructure-assisted detection of carcinoembryonic antigen with a solid-state nanopore.
    Tian R; Weng T; Chen S; Wu J; Yin B; Ma W; Liang L; Xie W; Wang Y; Zeng X; Yin Y; Wang D
    Bioelectrochemistry; 2023 Feb; 149():108284. PubMed ID: 36244111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA nanotechnology assisted nanopore-based analysis.
    Ding T; Yang J; Pan V; Zhao N; Lu Z; Ke Y; Zhang C
    Nucleic Acids Res; 2020 Apr; 48(6):2791-2806. PubMed ID: 32083656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopores formed by DNA origami: a review.
    Bell NA; Keyser UF
    FEBS Lett; 2014 Oct; 588(19):3564-70. PubMed ID: 24928438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEM based applications in solid state nanopores: From fabrication to liquid in-situ bio-imaging.
    Muhammad Sajeer P ; Simran ; Nukala P; Manoj M Varma
    Micron; 2022 Nov; 162():103347. PubMed ID: 36081256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive and regenerable nanopore sensing based on target induced aptamer dissociation.
    Zhang S; Chai H; Cheng K; Song L; Chen W; Yu L; Lu Z; Liu B; Zhao YD
    Biosens Bioelectron; 2020 Mar; 152():112011. PubMed ID: 32056734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current pulse signature of native kanamycin aptamer and its implication for molecular interactions on a single protein nanopore sensing interface.
    Shi HQ; Ma Y; Wang YH; Fang F; Wu ZY
    Biosens Bioelectron; 2022 Apr; 201():113966. PubMed ID: 35016110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products.
    Tan X; Lv C; Chen H
    Crit Rev Food Sci Nutr; 2023; 63(31):10866-10879. PubMed ID: 35687354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity of DNA during translocation through a solid-state nanopore.
    Plesa C; van Loo N; Ketterer P; Dietz H; Dekker C
    Nano Lett; 2015 Jan; 15(1):732-7. PubMed ID: 25496458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Cage as Single-Molecule Carrier for Solid-State Nanopore Analysis.
    Wang Z; Hu R; Zhu R; Lu W; Wei G; Zhao J; Gu ZY; Zhao Q
    Small Methods; 2022 Nov; 6(11):e2200743. PubMed ID: 36216776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels.
    Göpfrich K; Keyser UF
    Adv Exp Med Biol; 2019; 1174():331-370. PubMed ID: 31713205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.