These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34706412)
1. Improving depression prediction using a novel feature selection algorithm coupled with context-aware analysis. Dai Z; Zhou H; Ba Q; Zhou Y; Wang L; Li G J Affect Disord; 2021 Dec; 295():1040-1048. PubMed ID: 34706412 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning Prediction of Treatment Outcome in Late-Life Depression. Grzenda A; Speier W; Siddarth P; Pant A; Krause-Sorio B; Narr K; Lavretsky H Front Psychiatry; 2021; 12():738494. PubMed ID: 34744829 [No Abstract] [Full Text] [Related]
3. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation. Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067 [TBL] [Abstract][Full Text] [Related]
4. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class. Ni Q; Chen L Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249 [TBL] [Abstract][Full Text] [Related]
5. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset. Velusamy D; Ramasamy K Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698 [TBL] [Abstract][Full Text] [Related]
6. A Multimodal Approach for Detection and Assessment of Depression Using Text, Audio and Video. Zhang W; Mao K; Chen J Phenomics; 2024 Jun; 4(3):234-249. PubMed ID: 39398421 [TBL] [Abstract][Full Text] [Related]
7. A New Regression Model for Depression Severity Prediction Based on Correlation among Audio Features Using a Graph Convolutional Neural Network. Ishimaru M; Okada Y; Uchiyama R; Horiguchi R; Toyoshima I Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832211 [TBL] [Abstract][Full Text] [Related]
8. A filter approach for feature selection in classification: application to automatic atrial fibrillation detection in electrocardiogram recordings. Michel P; Ngo N; Pons JF; Delliaux S; Giorgi R BMC Med Inform Decis Mak; 2021 May; 21(Suppl 4):130. PubMed ID: 33947379 [TBL] [Abstract][Full Text] [Related]
9. A comparative study on feature selection for a risk prediction model for colorectal cancer. Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951 [TBL] [Abstract][Full Text] [Related]
10. A Wrapper Feature Subset Selection Method Based on Randomized Search and Multilayer Structure. Mao Y; Yang Y Biomed Res Int; 2019; 2019():9864213. PubMed ID: 31828154 [TBL] [Abstract][Full Text] [Related]
11. A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection. Liu Y; Guo Y; Wu W; Xiong Y; Sun C; Yuan L; Li M Interdiscip Sci; 2019 Dec; 11(4):738-747. PubMed ID: 31486019 [TBL] [Abstract][Full Text] [Related]
12. Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis. Yu L; Tao G; Zhu L; Wang G; Li Z; Ye J; Chen Q BMC Cancer; 2019 May; 19(1):464. PubMed ID: 31101024 [TBL] [Abstract][Full Text] [Related]
13. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
14. A Stroke Risk Detection: Improving Hybrid Feature Selection Method. Zhang Y; Zhou Y; Zhang D; Song W J Med Internet Res; 2019 Apr; 21(4):e12437. PubMed ID: 30938684 [TBL] [Abstract][Full Text] [Related]
15. Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection. Takahashi Y; Ueki M; Yamada M; Tamiya G; Motoike IN; Saigusa D; Sakurai M; Nagami F; Ogishima S; Koshiba S; Kinoshita K; Yamamoto M; Tomita H Transl Psychiatry; 2020 May; 10(1):157. PubMed ID: 32427830 [TBL] [Abstract][Full Text] [Related]
16. Predicting drug target interactions using meta-path-based semantic network analysis. Fu G; Ding Y; Seal A; Chen B; Sun Y; Bolton E BMC Bioinformatics; 2016 Apr; 17():160. PubMed ID: 27071755 [TBL] [Abstract][Full Text] [Related]
17. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study. Zhang W; Liu H; Silenzio VMB; Qiu P; Gong W JMIR Med Inform; 2020 Apr; 8(4):e15516. PubMed ID: 32352387 [TBL] [Abstract][Full Text] [Related]
19. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Şen B; Peker M; Çavuşoğlu A; Çelebi FV J Med Syst; 2014 Mar; 38(3):18. PubMed ID: 24609509 [TBL] [Abstract][Full Text] [Related]
20. A machine learning approach on multiscale texture analysis for breast microcalcification diagnosis. Fanizzi A; Basile TMA; Losurdo L; Bellotti R; Bottigli U; Dentamaro R; Didonna V; Fausto A; Massafra R; Moschetta M; Popescu O; Tamborra P; Tangaro S; La Forgia D BMC Bioinformatics; 2020 Mar; 21(Suppl 2):91. PubMed ID: 32164532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]