These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34706599)

  • 1. Ultra-specific nucleic acid testing by target-activated nucleases.
    Fu J; Li J; Chen J; Li Y; Liu J; Su X; Shi S
    Crit Rev Biotechnol; 2022 Nov; 42(7):1061-1078. PubMed ID: 34706599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensing platforms for DNA diagnostics based on CRISPR/Cas nucleases: towards the detection of nucleic acids at the level of single molecules in non-laboratory settings.
    Khmeleva SA; Ptitsyn KG; Kurbatov LK; Timoshenko OS; Suprun EV; Radko SP; Lisitsa AV
    Biomed Khim; 2024 Sep; 70(5):287-303. PubMed ID: 39324194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic performance of isothermal amplification techniques and lateral flow approach for nucleic acid diagnostics.
    Mukama O; Nie C; Habimana JD; Meng X; Ting Y; Songwe F; Al Farga A; Mugisha S; Rwibasira P; Zhang Y; Zeng L
    Anal Biochem; 2020 Jul; 600():113762. PubMed ID: 32387190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas enzymes: The toolkit revolutionizing diagnostics.
    Verosloff MS; Shapiro SJ; Hawkins EM; Alpay E; Verma D; Stanfield EG; Kreindler L; Jain S; McKay B; Hubbell SA; Hendriks CG; Blizard BA; Broughton JP; Chen JS
    Biotechnol J; 2022 Jul; 17(7):e2100304. PubMed ID: 34505742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating CRISPR/Cas within isothermal amplification for point-of-Care Assay of nucleic acid.
    Zhang L; Jiang H; Zhu Z; Liu J; Li B
    Talanta; 2022 Jun; 243():123388. PubMed ID: 35303554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of CRISPR-Based Genome Editing: Survival, Evolution and Challenges.
    Ahmad HI; Ahmad MJ; Asif AR; Adnan M; Iqbal MK; Mehmood K; Muhammad SA; Bhuiyan AA; Elokil A; Du X; Zhao C; Liu X; Xie S
    Curr Issues Mol Biol; 2018; 28():47-68. PubMed ID: 29428910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion of FokI and catalytically inactive prokaryotic Argonautes enables site-specific programmable DNA cleavage.
    Wang Q; Rao GS; Marsic T; Aman R; Mahfouz M
    J Biol Chem; 2024 Sep; 300(9):107720. PubMed ID: 39214308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in amplification-free detection of nucleic acid: CRISPR/Cas system as a powerful tool.
    Qian S; Chen Y; Xu X; Peng C; Wang X; Wu H; Liu Y; Zhong X; Xu J; Wu J
    Anal Biochem; 2022 Apr; 643():114593. PubMed ID: 35157895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural principles of CRISPR-Cas enzymes used in nucleic acid detection.
    Das A; Goswami HN; Whyms CT; Sridhara S; Li H
    J Struct Biol; 2022 Mar; 214(1):107838. PubMed ID: 35123001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas-mediated diagnostics.
    Li L; Shen G; Wu M; Jiang J; Xia Q; Lin P
    Trends Biotechnol; 2022 Nov; 40(11):1326-1345. PubMed ID: 35595574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SHERLOCK: nucleic acid detection with CRISPR nucleases.
    Kellner MJ; Koob JG; Gootenberg JS; Abudayyeh OO; Zhang F
    Nat Protoc; 2019 Oct; 14(10):2986-3012. PubMed ID: 31548639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas Systems towards Next-Generation Biosensing.
    Li Y; Li S; Wang J; Liu G
    Trends Biotechnol; 2019 Jul; 37(7):730-743. PubMed ID: 30654914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable site-specific DNA double-strand breaks via PNA-assisted prokaryotic Argonautes.
    Marsic T; Gundra SR; Wang Q; Aman R; Mahas A; Mahfouz MM
    Nucleic Acids Res; 2023 Sep; 51(17):9491-9506. PubMed ID: 37560931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas12-based nucleic acids detection systems.
    Leung RK; Cheng QX; Wu ZL; Khan G; Liu Y; Xia HY; Wang J
    Methods; 2022 Jul; 203():276-281. PubMed ID: 33662563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review.
    Habimana JD; Huang R; Muhoza B; Kalisa YN; Han X; Deng W; Li Z
    Biosens Bioelectron; 2022 May; 203():114033. PubMed ID: 35131696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel nucleic acid detection strategies based on CRISPR-Cas systems: From construction to application.
    Zhu CS; Liu CY; Qiu XY; Xie SS; Li WY; Zhu L; Zhu LY
    Biotechnol Bioeng; 2020 Jul; 117(7):2279-2294. PubMed ID: 32175589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering the Genome-Wide Activity of CRISPR-Cas Nucleases.
    Tsai SQ
    ACS Chem Biol; 2018 Feb; 13(2):305-308. PubMed ID: 29281250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Dot-Based Molecular Beacons for Quantitative Detection of Nucleic Acids with CRISPR/Cas(N) Nucleases.
    Green CM; Spangler J; Susumu K; Stenger DA; Medintz IL; Díaz SA
    ACS Nano; 2022 Dec; 16(12):20693-20704. PubMed ID: 36378103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review.
    Wang SY; Du YC; Wang DX; Ma JY; Tang AN; Kong DM
    Anal Chim Acta; 2021 Nov; 1185():338882. PubMed ID: 34711321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges.
    Zhou J; Li Z; Seun Olajide J; Wang G
    Heliyon; 2024 Feb; 10(4):e26179. PubMed ID: 38390187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.