These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1092 related articles for article (PubMed ID: 34706720)

  • 1. Development and validation of a novel lipid metabolism-related gene prognostic signature and candidate drugs for patients with bladder cancer.
    Zhu K; Xiaoqiang L; Deng W; Wang G; Fu B
    Lipids Health Dis; 2021 Oct; 20(1):146. PubMed ID: 34706720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel signature based on unfolded protein response-related gene for predicting prognosis in bladder cancer.
    Zhu K; Xiaoqiang L; Deng W; Wang G; Fu B
    Hum Genomics; 2021 Dec; 15(1):73. PubMed ID: 34930465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel defined inflammation-related long noncoding RNA signature contributes to predicting prognosis and distinction between the cold and hot tumors in bladder cancer.
    Xiong X; Chen C; Li X; Yang J; Zhang W; Wang X; Zhang H; Peng M; Li L; Luo P
    Front Oncol; 2023; 13():972558. PubMed ID: 37064115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TFRC, associated with hypoxia and immune, is a prognostic factor and potential therapeutic target for bladder cancer.
    Tang R; Wang H; Liu J; Song L; Hou H; Liu M; Wang J; Wang J
    Eur J Med Res; 2024 Feb; 29(1):112. PubMed ID: 38336764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying a Novel Defined Pyroptosis-Associated Long Noncoding RNA Signature Contributes to Predicting Prognosis and Tumor Microenvironment of Bladder Cancer.
    Lu H; Wu J; Liang L; Wang X; Cai H
    Front Immunol; 2022; 13():803355. PubMed ID: 35154117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis.
    Li J; Cao J; Li P; Yao Z; Deng R; Ying L; Tian J
    BMC Cancer; 2021 Jul; 21(1):858. PubMed ID: 34315402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a chromatin regulator signature and potential candidate drugs for bladder cancer.
    Zhu K; Liu X; Deng W; Wang G; Fu B
    Hereditas; 2022 Feb; 159(1):13. PubMed ID: 35125116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognosis analysis and validation of lipid metabolism-associated lncRNAs and tumor immune microenvironment in bladder cancer.
    Tan Z; Fu S; Zuo J; Wang J; Wang H
    Aging (Albany NY); 2023 Aug; 15(16):8384-8407. PubMed ID: 37632832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective N6-methyladenosine-related long non-coding RNA prognostic signature for predicting the prognosis of patients with bladder cancer.
    Ma T; Wang X; Meng L; Liu X; Wang J; Zhang W; Tian Z; Zhang Y
    BMC Cancer; 2021 Nov; 21(1):1256. PubMed ID: 34802433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a Novel PPAR Signature for Predicting Prognosis, Immune Microenvironment, and Chemotherapy Response in Bladder Cancer.
    Zhu K; Deng W; Deng H; Liu X; Wang G; Fu B
    PPAR Res; 2021; 2021():7056506. PubMed ID: 35027921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer.
    Wang Z; Tu L; Chen M; Tong S
    BMC Cancer; 2021 Jun; 21(1):692. PubMed ID: 34112144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel focal adhesion-related risk model predicts prognosis of bladder cancer -- a bioinformatic study based on TCGA and GEO database.
    Hu J; Wang L; Li L; Wang Y; Bi J
    BMC Cancer; 2022 Nov; 22(1):1158. PubMed ID: 36357874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic Benefits and Prognostic Value of a Model Based on 7 Immune-associated Genes in Bladder Cancer.
    Cao M; Cao Y; Xue S; Zhang Q; Zhang H; Xue W
    Altern Ther Health Med; 2024 Apr; 30(4):130-138. PubMed ID: 38518167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Omics analysis identifies a lncRNA-related prognostic signature to predict bladder cancer recurrence.
    Xu Z; Chen H; Sun J; Mao W; Chen S; Chen M
    Bioengineered; 2021 Dec; 12(2):11108-11125. PubMed ID: 34738881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer.
    Wu X; Lv D; Cai C; Zhao Z; Wang M; Chen W; Liu Y
    Front Immunol; 2020; 11():590618. PubMed ID: 33391264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Prognosis-Related Risk Signature for Bladder Cancer to Predict Survival and Immune Landscapes.
    Wang L; Wang Y; Wang J; Li L; Bi J
    J Immunol Res; 2021; 2021():3236384. PubMed ID: 34708131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Expression Profile Analysis Developed and Validated a Prognostic Model Based on Immune-Related Genes in Bladder Cancer.
    Dong B; Liang J; Li D; Song W; Zhao S; Ma Y; Song J; Zhu M; Yang T
    Front Genet; 2021; 12():696912. PubMed ID: 34512722
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification and Validation of an Individualized Prognostic Signature of Bladder Cancer Based on Seven Immune Related Genes.
    Qiu H; Hu X; He C; Yu B; Li Y; Li J
    Front Genet; 2020; 11():12. PubMed ID: 32117435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and validation of telomerase related lncRNAs signature to predict prognosis and tumor immunotherapy response in bladder cancer.
    Chen X; Qin Z; Zhu X; Wang L; Li C; Wang H
    Sci Rep; 2023 Dec; 13(1):21816. PubMed ID: 38071230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TP53-based immune prognostic model for muscle-invasive bladder cancer.
    Li H; Lu H; Cui W; Huang Y; Jin X
    Aging (Albany NY); 2020 Dec; 13(2):1929-1946. PubMed ID: 33323544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.