These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34707104)

  • 1. Robust multi-input multi-output adaptive fuzzy terminal sliding mode control of deep brain stimulation in Parkinson's disease: a simulation study.
    Rouhani E; Fathi Y
    Sci Rep; 2021 Oct; 11(1):21169. PubMed ID: 34707104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of seizure in childhood absence epilepsy using robust control of deep brain stimulation: a simulation study.
    Rouhani E; Jafari E; Akhavan A
    Sci Rep; 2023 Jan; 13(1):461. PubMed ID: 36627375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.
    Su F; Wang J; Deng B; Wei XL; Chen YY; Liu C; Li HY
    Int J Neural Syst; 2015 Feb; 25(1):1450030. PubMed ID: 25338775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.
    Su F; Wang J; Niu S; Li H; Deng B; Liu C; Wei X
    Neural Netw; 2018 Feb; 98():283-295. PubMed ID: 29291546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease.
    Gorzelic P; Schiff SJ; Sinha A
    J Neural Eng; 2013 Apr; 10(2):026016. PubMed ID: 23449002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subspace-based predictive control of Parkinson's disease: A model-based study.
    Ahmadipour M; Barkhordari-Yazdi M; Seydnejad SR
    Neural Netw; 2021 Oct; 142():680-689. PubMed ID: 34403908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of DBS patterns on basal ganglia activity and thalamic relay : a computational study.
    Agarwal R; Sarma SV
    J Comput Neurosci; 2012 Aug; 33(1):151-67. PubMed ID: 22237601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive fuzzy sliding-mode controller of uncertain nonlinear systems.
    Wu TZ; Juang YT
    ISA Trans; 2008 Jul; 47(3):279-85. PubMed ID: 18377907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predefined performance-based model-free adaptive fractional-order fast terminal sliding-mode control of MIMO nonlinear systems.
    Esmaeili B; Salim M; Baradarannia M
    ISA Trans; 2022 Dec; 131():108-123. PubMed ID: 35715268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Fuzzy Sliding Mode Control of a Pressure-Controlled Artificial Ventilator.
    Mehedi IM; Shah HSM; Al-Saggaf UM; Mansouri R; Bettayeb M
    J Healthc Eng; 2021; 2021():1926711. PubMed ID: 34257849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Reinforcement Learning to Deep Brain Stimulation in a Computational Model of Parkinson's Disease.
    Lu M; Wei X; Che Y; Wang J; Loparo KA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):339-349. PubMed ID: 31715567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control.
    Roopaei M; Jahromi MZ
    Chaos; 2008 Sep; 18(3):033133. PubMed ID: 19045471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-loop control of deep brain stimulation: a simulation study.
    Santaniello S; Fiengo G; Glielmo L; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):15-24. PubMed ID: 20889437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connectivity derived thalamic segmentation in deep brain stimulation for tremor.
    Akram H; Dayal V; Mahlknecht P; Georgiev D; Hyam J; Foltynie T; Limousin P; De Vita E; Jahanshahi M; Ashburner J; Behrens T; Hariz M; Zrinzo L
    Neuroimage Clin; 2018; 18():130-142. PubMed ID: 29387530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-Loop Control of Tremor-Predominant Parkinsonian State Based on Parameter Estimation.
    Liu C; Wang J; Deng B; Wei X; Yu H; Li H; Fietkiewicz C; Loparo KA
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1109-1121. PubMed ID: 26955042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observer-based finite-time adaptive fuzzy back-stepping control for MIMO coupled nonlinear systems.
    Wang C; Zhang C; He D; Xiao J; Liu L
    Math Biosci Eng; 2022 Jul; 19(10):10637-10655. PubMed ID: 36032010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MIMO Fuzzy Sliding Mode Control for Three-Axis Inertially Stabilized Platform.
    Zhou Z; Zhang B; Mao D
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on adaptive deep brain stimulation in Parkinson's disease.
    Habets JGV; Heijmans M; Kuijf ML; Janssen MLF; Temel Y; Kubben PL
    Mov Disord; 2018 Dec; 33(12):1834-1843. PubMed ID: 30357911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Parkinsonian State With Uncertain Disturbance Based on Sliding Mode Control.
    Zhu Y; Wang J; Li H; Deng B; Liu C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2026-2034. PubMed ID: 28475061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoring the basal ganglia in Parkinson's disease to normal via multi-input phase-shifted deep brain stimulation.
    Agarwal R; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1539-42. PubMed ID: 21096376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.