These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34707150)

  • 1. Robust design of a multirotor aerial vehicle.
    Dutta A
    Sci Rep; 2021 Oct; 11(1):21137. PubMed ID: 34707150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smooth second-order sliding mode control for fully actuated multirotor aerial vehicles.
    Ricardo JA; Santos DA
    ISA Trans; 2022 Oct; 129(Pt A):169-178. PubMed ID: 35144771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modular Multirotor Unmanned Aerial Vehicle Design Approach for Development of an Engineering Education Platform.
    Kotarski D; Piljek P; Pranjić M; Grlj CG; Kasać J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of HJB optimal controllers for the attitude dynamics of a multirotor aerial vehicle.
    Prado IAA; Pereira MFV; de Castro DF; Dos Santos DA; Balthazar JM
    ISA Trans; 2018 Jun; 77():188-200. PubMed ID: 29678277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wayset-based guidance of multirotor aerial vehicles using robust tube-based model predictive control.
    Santos DA; Lagoa CM
    ISA Trans; 2022 Sep; 128(Pt B):123-135. PubMed ID: 34980480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence and Robustness Analysis of Novel Adaptive Multilayer Neural Dynamics-Based Controllers of Multirotor UAVs.
    Zheng L; Zhang Z
    IEEE Trans Cybern; 2021 Jul; 51(7):3710-3723. PubMed ID: 31295138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the guidance of fully-actuated multirotor aerial vehicles under control allocation constraints using the receding-horizon strategy.
    Bezerra JA; Santos DA
    ISA Trans; 2022 Jul; 126():21-35. PubMed ID: 34366122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System.
    Hinas A; Roberts JM; Gonzalez F
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty.
    Ji X; Niu Y; Shen L
    PLoS One; 2016; 11(11):e0166448. PubMed ID: 27835670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS.
    Hinas A; Ragel R; Roberts J; Gonzalez F
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31947777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control.
    Lungu M
    ISA Trans; 2019 Dec; 95():194-210. PubMed ID: 31171303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic design method for robust synthetic biology to satisfy design specifications.
    Chen BS; Wu CH
    BMC Syst Biol; 2009 Jun; 3():66. PubMed ID: 19566953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airborne Visual Detection and Tracking of Cooperative UAVs Exploiting Deep Learning.
    Opromolla R; Inchingolo G; Fasano G
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31591368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new robust control for minirotorcraft unmanned aerial vehicles.
    Mokhtari MR; Cherki B
    ISA Trans; 2015 May; 56():86-101. PubMed ID: 25677710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological control technology and application based on agricultural unmanned aerial vehicle (UAV) intelligent delivery of insect natural enemies (Trichogramma) carrier.
    Zhan Y; Chen S; Wang G; Fu J; Lan Y
    Pest Manag Sci; 2021 Jul; 77(7):3259-3272. PubMed ID: 33759315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions.
    Fabra F; Zamora W; Sangüesa J; Calafate CT; Cano JC; Manzoni P
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Purpose Low-Level Reinforcement Learning Control for Multi-Axis Rotor Aerial Vehicles.
    Pi CH; Dai YW; Hu KC; Cheng S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction-based psychoacoustic analysis of multirotor noise under gusty wind conditions.
    Ko J; Kim Y; Jeong J; Lee S
    J Acoust Soc Am; 2023 Nov; 154(5):3004-3018. PubMed ID: 37955567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of Aerodynamic Interference of a Hybrid Aircraft with Multirotor Propulsion.
    Czyż Z; Wendeker M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.