BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34707290)

  • 21. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure.
    Christodoulou N; Skourides PA
    Development; 2022 Jul; 149(13):. PubMed ID: 35662330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of cell protrusions by small GTPases during fusion of the neural folds.
    Rolo A; Savery D; Escuin S; de Castro SC; Armer HE; Munro PM; Molè MA; Greene ND; Copp AJ
    Elife; 2016 Apr; 5():e13273. PubMed ID: 27114066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure.
    McShane SG; Molè MA; Savery D; Greene ND; Tam PP; Copp AJ
    Dev Biol; 2015 Aug; 404(2):113-24. PubMed ID: 26079577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In toto live imaging of mouse morphogenesis and new insights into neural tube closure.
    Massarwa R; Niswander L
    Development; 2013 Jan; 140(1):226-36. PubMed ID: 23175632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus.
    Morita H; Kajiura-Kobayashi H; Takagi C; Yamamoto TS; Nonaka S; Ueno N
    Development; 2012 Apr; 139(8):1417-26. PubMed ID: 22378637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphogenetic movements in the neural plate and neural tube: mouse.
    Massarwa R; Ray HJ; Niswander L
    Wiley Interdiscip Rev Dev Biol; 2014; 3(1):59-68. PubMed ID: 24902834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-organizing optic-cup morphogenesis in three-dimensional culture.
    Eiraku M; Takata N; Ishibashi H; Kawada M; Sakakura E; Okuda S; Sekiguchi K; Adachi T; Sasai Y
    Nature; 2011 Apr; 472(7341):51-6. PubMed ID: 21475194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic imaging of mammalian neural tube closure.
    Pyrgaki C; Trainor P; Hadjantonakis AK; Niswander L
    Dev Biol; 2010 Aug; 344(2):941-7. PubMed ID: 20558153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cnn3 regulates neural tube morphogenesis and neuronal stem cell properties.
    Junghans D; Herzog S
    FEBS J; 2018 Jan; 285(2):325-338. PubMed ID: 29151265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure.
    Zhou CJ; Ji Y; Reynolds K; McMahon M; Garland MA; Zhang S; Sun B; Gu R; Islam M; Liu Y; Zhao T; Hsu G; Iwasa J
    Biochem Biophys Res Commun; 2020 Jun; 526(3):647-653. PubMed ID: 32248972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caspases and matrix metalloproteases facilitate collective behavior of non-neural ectoderm after hindbrain neuropore closure.
    Shinotsuka N; Yamaguchi Y; Nakazato K; Matsumoto Y; Mochizuki A; Miura M
    BMC Dev Biol; 2018 Jul; 18(1):17. PubMed ID: 30064364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ontology for developmental processes and toxicities of neural tube closure.
    Heusinkveld HJ; Staal YCM; Baker NC; Daston G; Knudsen TB; Piersma A
    Reprod Toxicol; 2021 Jan; 99():160-167. PubMed ID: 32926990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis.
    Morita H; Nandadasa S; Yamamoto TS; Terasaka-Iioka C; Wylie C; Ueno N
    Development; 2010 Apr; 137(8):1315-25. PubMed ID: 20332149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stem cell-derived models of spinal neurulation.
    Mirdass C; Catala M; Bocel M; Nedelec S; Ribes V
    Emerg Top Life Sci; 2023 Dec; 7(4):423-437. PubMed ID: 38087891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural tube closure: the curious case of shrinking junctions.
    Sullivan-Brown J; Goldstein B
    Curr Biol; 2012 Jul; 22(14):R574-6. PubMed ID: 22835793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
    De Castro SCP; Hirst CS; Savery D; Rolo A; Lickert H; Andersen B; Copp AJ; Greene NDE
    Dev Biol; 2018 Mar; 435(2):130-137. PubMed ID: 29397878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epithelial fusion during neural tube morphogenesis.
    Pai YJ; Abdullah NL; Mohd-Zin SW; Mohammed RS; Rolo A; Greene ND; Abdul-Aziz NM; Copp AJ
    Birth Defects Res A Clin Mol Teratol; 2012 Oct; 94(10):817-23. PubMed ID: 22945349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects.
    Dady A; Havis E; Escriou V; Catala M; Duband JL
    J Neurosci; 2014 Sep; 34(39):13208-21. PubMed ID: 25253865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse.
    Shum AS; Copp AJ
    Anat Embryol (Berl); 1996 Jul; 194(1):65-73. PubMed ID: 8800424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of vertebrate neural plate internalization.
    Araya C; Carrasco D
    Int J Dev Biol; 2021; 65(4-5-6):263-273. PubMed ID: 32930349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.