These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34708030)

  • 41. [CRISPR/Cas-based genome editing in Aspergillus niger].
    Zheng X; Zheng P; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):980-990. PubMed ID: 33783162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages.
    Alok A; Chauhan H; Upadhyay SK; Pandey A; Kumar J; Singh K
    Life (Basel); 2021 Sep; 11(10):. PubMed ID: 34685392
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective.
    Zhang D; Hussain A; Manghwar H; Xie K; Xie S; Zhao S; Larkin RM; Qing P; Jin S; Ding F
    Plant Biotechnol J; 2020 Aug; 18(8):1651-1669. PubMed ID: 32271968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR/Cas technology promotes the various application of Dunaliella salina system.
    Feng S; Hu L; Zhang Q; Zhang F; Du J; Liang G; Li A; Song G; Liu Y
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8621-8630. PubMed ID: 32918585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect.
    Chuang YF; Phipps AJ; Lin FL; Hecht V; Hewitt AW; Wang PY; Liu GS
    Cell Mol Life Sci; 2021 Mar; 78(6):2683-2708. PubMed ID: 33388855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic genome engineering forging new frontiers for wine yeast.
    Pretorius IS
    Crit Rev Biotechnol; 2017 Feb; 37(1):112-136. PubMed ID: 27535766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The genome editing revolution: A CRISPR-Cas TALE off-target story.
    Stella S; Montoya G
    Bioessays; 2016 Jul; 38 Suppl 1():S4-S13. PubMed ID: 27417121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools.
    Zhu Y; Huang Z
    Natl Sci Rev; 2019 May; 6(3):438-451. PubMed ID: 34691893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition.
    Kaul T; Sony SK; Verma R; Motelb KFA; Prakash AT; Eswaran M; Bharti J; Nehra M; Kaul R
    J Biosci; 2020; 45():. PubMed ID: 33361628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applications of CRISPR-Cas in agriculture and plant biotechnology.
    Zhu H; Li C; Gao C
    Nat Rev Mol Cell Biol; 2020 Nov; 21(11):661-677. PubMed ID: 32973356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems.
    Liu KI; Ramli MNB; Sutrisnoh NB; Tan MH
    Methods Mol Biol; 2018; 1772():267-288. PubMed ID: 29754234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects.
    Manghwar H; Li B; Ding X; Hussain A; Lindsey K; Zhang X; Jin S
    Adv Sci (Weinh); 2020 Mar; 7(6):1902312. PubMed ID: 32195078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X; Shi W; Geng LZ; Xu JP
    Yi Chuan; 2020 Jun; 42(6):556-564. PubMed ID: 32694114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Advances in metabolic engineering of non-conventional yeasts].
    Su L; Zhang G; Yao Z; Liang P; Dai Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1659-1676. PubMed ID: 34085448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing.
    Kim D; Le QV; Wu Y; Park J; Oh YK
    Pharmaceutics; 2020 Dec; 12(12):. PubMed ID: 33353099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [CRISPR/Cas systems in genome engineering of bacteriophages].
    Liang CJ; Meng FM; Ai YC
    Yi Chuan; 2018 May; 40(5):378-389. PubMed ID: 29785946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR applications in ophthalmologic genome surgery.
    Cabral T; DiCarlo JE; Justus S; Sengillo JD; Xu Y; Tsang SH
    Curr Opin Ophthalmol; 2017 May; 28(3):252-259. PubMed ID: 28141764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.