These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34708030)

  • 61. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering.
    Wang Y; Liu Y; Zheng P; Sun J; Wang M
    Trends Biotechnol; 2021 Feb; 39(2):165-180. PubMed ID: 32680590
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Conventional genetic manipulation of desulfurizing bacteria and prospects of using CRISPR-Cas systems for enhanced desulfurization activity.
    Parveen S; Akhtar N; Ghauri MA; Akhtar K
    Crit Rev Microbiol; 2020 May; 46(3):300-320. PubMed ID: 32530374
    [TBL] [Abstract][Full Text] [Related]  

  • 64. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expansion of the CRISPR/Cas Genome-Sculpting Toolbox: Innovations, Applications and Challenges.
    Batool A; Malik F; Andrabi KI
    Mol Diagn Ther; 2021 Jan; 25(1):41-57. PubMed ID: 33185860
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing.
    Asmamaw M; Zawdie B
    Biologics; 2021; 15():353-361. PubMed ID: 34456559
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.
    Chen K; Wang Y; Zhang R; Zhang H; Gao C
    Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The endless battle between phages and CRISPR-Cas systems in
    Philippe C; Moineau S
    Biochem Cell Biol; 2021 Aug; 99(4):397-402. PubMed ID: 33534660
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation.
    Mahas A; Neal Stewart C; Mahfouz MM
    Biotechnol Adv; 2018; 36(1):295-310. PubMed ID: 29197619
    [TBL] [Abstract][Full Text] [Related]  

  • 73. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
    Ishino Y; Krupovic M; Forterre P
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29358495
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Editing plants for virus resistance using CRISPR-Cas.
    Green JC; Hu JS
    Acta Virol; 2017; 61(2):138-142. PubMed ID: 28523919
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases.
    Konishi CT; Long C
    J Biomed Res; 2020 Nov; 35(2):148-162. PubMed ID: 33402545
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species.
    Fernandes T; Osório C; Sousa MJ; Franco-Duarte R
    J Fungi (Basel); 2023 Jan; 9(2):. PubMed ID: 36836301
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges.
    Xia Y; Li Y; Shen W; Yang H; Chen X
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894990
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Superior Conjugative Plasmids Delivered by Bacteria to Diverse Fungi.
    Cochrane RR; Shrestha A; Severo de Almeida MM; Agyare-Tabbi M; Brumwell SL; Hamadache S; Meaney JS; Nucifora DP; Say HH; Sharma J; Soltysiak MPM; Tong C; Van Belois K; Walker EJL; Lachance MA; Gloor GB; Edgell DR; Shapiro RS; Karas BJ
    Biodes Res; 2022; 2022():9802168. PubMed ID: 37850145
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CRISPR-Cas9 engineering in the hybrid yeast Zygosaccharomyces parabailii can lead to loss of heterozygosity in target chromosomes.
    Jayaprakash P; Barroso L; Vajente M; Maestroni L; Louis EJ; Morrissey JP; Branduardi P
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37458780
    [TBL] [Abstract][Full Text] [Related]  

  • 80. CREEPY: CRISPR-mediated editing of synthetic episomes in yeast.
    Zhao Y; Coelho C; Lauer S; Majewski M; Laurent JM; Brosh R; Boeke JD
    Nucleic Acids Res; 2023 Jul; 51(13):e72. PubMed ID: 37326023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.