These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34708036)
1. Histopathological Images and Multi-Omics Integration Predict Molecular Characteristics and Survival in Lung Adenocarcinoma. Chen L; Zeng H; Xiang Y; Huang Y; Luo Y; Ma X Front Cell Dev Biol; 2021; 9():720110. PubMed ID: 34708036 [TBL] [Abstract][Full Text] [Related]
2. Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer. Zeng H; Chen L; Zhang M; Luo Y; Ma X Gynecol Oncol; 2021 Oct; 163(1):171-180. PubMed ID: 34275655 [TBL] [Abstract][Full Text] [Related]
3. Integrative Models of Histopathological Image Features and Omics Data Predict Survival in Head and Neck Squamous Cell Carcinoma. Zeng H; Chen L; Huang Y; Luo Y; Ma X Front Cell Dev Biol; 2020; 8():553099. PubMed ID: 33195188 [TBL] [Abstract][Full Text] [Related]
4. Histopathological image and gene expression pattern analysis for predicting molecular features and prognosis of head and neck squamous cell carcinoma. Chen L; Zeng H; Zhang M; Luo Y; Ma X Cancer Med; 2021 Jul; 10(13):4615-4628. PubMed ID: 33987946 [TBL] [Abstract][Full Text] [Related]
5. Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Zeng H; Chen L; Wang M; Luo Y; Huang Y; Ma X Aging (Albany NY); 2021 Mar; 13(7):9960-9975. PubMed ID: 33795526 [TBL] [Abstract][Full Text] [Related]
6. Integrative models of histopathological images and multi-omics data predict prognosis in endometrial carcinoma. Li Y; Du P; Zeng H; Wei Y; Fu H; Zhong X; Ma X PeerJ; 2023; 11():e15674. PubMed ID: 37583914 [TBL] [Abstract][Full Text] [Related]
7. Assessment of AURKA expression and prognosis prediction in lung adenocarcinoma using machine learning-based pathomics signature. Bai C; Sun Y; Zhang X; Zuo Z Heliyon; 2024 Jun; 10(12):e33107. PubMed ID: 39022022 [TBL] [Abstract][Full Text] [Related]
8. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data. Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649 [TBL] [Abstract][Full Text] [Related]
9. Network analysis of histopathological image features and genomics data improving prognosis performance in clear cell renal cell carcinoma. Ji J; Liu Y; Bao Y; Men Y; Hui Z Urol Oncol; 2024 Aug; 42(8):249.e1-249.e11. PubMed ID: 38653593 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma. Wu P; Zheng Y; Wang Y; Wang Y; Liang N J Transl Med; 2020 Oct; 18(1):380. PubMed ID: 33028329 [TBL] [Abstract][Full Text] [Related]
11. Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma. Zhao Y; Gao Y; Xu X; Zhou J; Wang H BMC Cancer; 2021 Mar; 21(1):257. PubMed ID: 33750346 [TBL] [Abstract][Full Text] [Related]
12. Multi-omics Data Analyses Construct TME and Identify the Immune-Related Prognosis Signatures in Human LUAD. Zhang Y; Yang M; Ng DM; Haleem M; Yi T; Hu S; Zhu H; Zhao G; Liao Q Mol Ther Nucleic Acids; 2020 Sep; 21():860-873. PubMed ID: 32805489 [TBL] [Abstract][Full Text] [Related]
13. Classification and Prognosis Prediction from Histopathological Images of Hepatocellular Carcinoma by a Fully Automated Pipeline Based on Machine Learning. Liao H; Xiong T; Peng J; Xu L; Liao M; Zhang Z; Wu Z; Yuan K; Zeng Y Ann Surg Oncol; 2020 Jul; 27(7):2359-2369. PubMed ID: 31916093 [TBL] [Abstract][Full Text] [Related]
14. Eight-gene signature predicts recurrence in lung adenocarcinoma. Zhang Y; Fan Q; Guo Y; Zhu K Cancer Biomark; 2020; 28(4):447-457. PubMed ID: 32508318 [TBL] [Abstract][Full Text] [Related]
15. DeepRePath: Identifying the Prognostic Features of Early-Stage Lung Adenocarcinoma Using Multi-Scale Pathology Images and Deep Convolutional Neural Networks. Shim WS; Yim K; Kim TJ; Sung YE; Lee G; Hong JH; Chun SH; Kim S; An HJ; Na SJ; Kim JJ; Moon MH; Moon SW; Park S; Hong SA; Ko YH Cancers (Basel); 2021 Jul; 13(13):. PubMed ID: 34282757 [TBL] [Abstract][Full Text] [Related]
16. A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies. Li Y; Ge D; Gu J; Xu F; Zhu Q; Lu C BMC Cancer; 2019 Sep; 19(1):886. PubMed ID: 31488089 [TBL] [Abstract][Full Text] [Related]
17. A seven-gene prognostic signature predicts overall survival of patients with lung adenocarcinoma (LUAD). Al-Dherasi A; Huang QT; Liao Y; Al-Mosaib S; Hua R; Wang Y; Yu Y; Zhang Y; Zhang X; Huang C; Mousa H; Ge D; Sufiyan S; Bai W; Liu R; Shao Y; Li Y; Zhang J; Shi L; Lv D; Li Z; Liu Q Cancer Cell Int; 2021 Jun; 21(1):294. PubMed ID: 34092242 [TBL] [Abstract][Full Text] [Related]
18. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
19. Multi-scale pathology image texture signature is a prognostic factor for resectable lung adenocarcinoma: a multi-center, retrospective study. Wang Y; Pan X; Lin H; Han C; An Y; Qiu B; Feng Z; Huang X; Xu Z; Shi Z; Chen X; Li B; Yan L; Lu C; Li Z; Cui Y; Liu Z; Liu Z J Transl Med; 2022 Dec; 20(1):595. PubMed ID: 36517832 [TBL] [Abstract][Full Text] [Related]
20. Identification of a Sixteen-gene Prognostic Biomarker for Lung Adenocarcinoma Using a Machine Learning Method. Ma B; Geng Y; Meng F; Yan G; Song F J Cancer; 2020; 11(5):1288-1298. PubMed ID: 31956375 [No Abstract] [Full Text] [Related] [Next] [New Search]