These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 34708308)
1. Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations. Lavon K; Morany A; Halevi R; Hamdan A; Raanani E; Bluestein D; Haj-Ali R Ann Biomed Eng; 2021 Dec; 49(12):3310-3322. PubMed ID: 34708308 [TBL] [Abstract][Full Text] [Related]
2. The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface. Yap CH; Saikrishnan N; Tamilselvan G; Vasilyev N; Yoganathan AP Am J Physiol Heart Circ Physiol; 2012 Sep; 303(6):H721-31. PubMed ID: 22821994 [TBL] [Abstract][Full Text] [Related]
3. Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis. Halevi R; Hamdan A; Marom G; Mega M; Raanani E; Haj-Ali R J Biomech; 2015 Feb; 48(3):489-97. PubMed ID: 25553668 [TBL] [Abstract][Full Text] [Related]
4. Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid-Structure Interaction Approach. Emendi M; Sturla F; Ghosh RP; Bianchi M; Piatti F; Pluchinotta FR; Giese D; Lombardi M; Redaelli A; Bluestein D Ann Biomed Eng; 2021 Feb; 49(2):627-641. PubMed ID: 32804291 [TBL] [Abstract][Full Text] [Related]
5. Age, Sex, and Valve Phenotype Differences in Fibro-Calcific Remodeling of Calcified Aortic Valve. Voisine M; Hervault M; Shen M; Boilard AJ; Filion B; Rosa M; Bossé Y; Mathieu P; Côté N; Clavel MA J Am Heart Assoc; 2020 May; 9(10):e015610. PubMed ID: 32384012 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal Complexity of the Aortic Sinus Vortex as a Function of Leaflet Calcification. Hatoum H; Dasi LP Ann Biomed Eng; 2019 Apr; 47(4):1116-1128. PubMed ID: 30710186 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: deployments and paravalvular leakage. Lavon K; Marom G; Bianchi M; Halevi R; Hamdan A; Morany A; Raanani E; Bluestein D; Haj-Ali R Med Biol Eng Comput; 2019 Oct; 57(10):2129-2143. PubMed ID: 31372826 [TBL] [Abstract][Full Text] [Related]
8. Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves. Seaman C; Akingba AG; Sucosky P J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24474392 [TBL] [Abstract][Full Text] [Related]
9. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Chandra S; Rajamannan NM; Sucosky P Biomech Model Mechanobiol; 2012 Sep; 11(7):1085-96. PubMed ID: 22294208 [TBL] [Abstract][Full Text] [Related]
10. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. Sun L; Chandra S; Sucosky P PLoS One; 2012; 7(10):e48843. PubMed ID: 23119099 [TBL] [Abstract][Full Text] [Related]
11. Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Halevi R; Hamdan A; Marom G; Lavon K; Ben-Zekry S; Raanani E; Bluestein D; Haj-Ali R Med Biol Eng Comput; 2016 Nov; 54(11):1683-1694. PubMed ID: 26906280 [TBL] [Abstract][Full Text] [Related]
12. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. Weinberg EJ; Kaazempur Mofrad MR J Biomech; 2008 Dec; 41(16):3482-7. PubMed ID: 18996528 [TBL] [Abstract][Full Text] [Related]
13. Ex vivo assessment of valve thickness/calcification of patients with calcific aortic stenosis in relation to in vivo clinical outcomes. Cheng CL; Chang HH; Huang PJ; Wang WC; Lin SY J Mech Behav Biomed Mater; 2017 Oct; 74():324-332. PubMed ID: 28651163 [TBL] [Abstract][Full Text] [Related]
14. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. Cao K; Sucosky P Int J Numer Method Biomed Eng; 2017 Mar; 33(3):. PubMed ID: 27138991 [TBL] [Abstract][Full Text] [Related]
15. Generation of Simulated Calcific Lesions in Valve Leaflets for Flow Studies. Seaman C; McNally A; Biddle S; Jankowski L; Sucosky P J Heart Valve Dis; 2015 Jan; 24(1):115-25. PubMed ID: 26182629 [TBL] [Abstract][Full Text] [Related]
16. The significance of aortic valve calcification in patients with bicuspid aortic valve disease. Ren X; Zhang M; Liu K; Hou Z; Gao Y; Yin W; Wang Z; Li Z; Lu B Int J Cardiovasc Imaging; 2016 Mar; 32(3):471-8. PubMed ID: 26440659 [TBL] [Abstract][Full Text] [Related]
17. Bicuspid aortic valves experience increased strain as compared to tricuspid aortic valves. Szeto K; Pastuszko P; del Álamo JC; Lasheras J; Nigam V World J Pediatr Congenit Heart Surg; 2013 Oct; 4(4):362-6. PubMed ID: 24327628 [TBL] [Abstract][Full Text] [Related]
18. Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Marom G; Kim HS; Rosenfeld M; Raanani E; Haj-Ali R Med Biol Eng Comput; 2013 Aug; 51(8):839-48. PubMed ID: 23475570 [TBL] [Abstract][Full Text] [Related]
19. Fragmentation of Different Calcification Growth Patterns in Bicuspid Valves During Balloon Valvuloplasty Procedure. Morany A; Lavon K; Halevi R; Haj-Ali N; Bluestein D; Raanani E; Hamdan A; Haj-Ali R Ann Biomed Eng; 2023 May; 51(5):1014-1027. PubMed ID: 36451023 [TBL] [Abstract][Full Text] [Related]
20. Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy. Kimura N; Nakamura M; Komiya K; Nishi S; Yamaguchi A; Tanaka O; Misawa Y; Adachi H; Kawahito K J Thorac Cardiovasc Surg; 2017 Apr; 153(4):S52-S62.e3. PubMed ID: 28190607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]