These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34708523)

  • 21. Insect odorant receptors are molecular targets of the insect repellent DEET.
    Ditzen M; Pellegrino M; Vosshall LB
    Science; 2008 Mar; 319(5871):1838-42. PubMed ID: 18339904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficacy and safety of repellents marketed in Brazil against bites from Aedes aegypti and Aedes albopictus: A systematic review.
    Gomes Fernandes MR; Cruz Lopes L; Suguimoto Iwami R; Del Grossi Paglia M; Mateus de Castilho B; Maicon de Oliveira A; Fulone I; Silveira Leite R; de Cássia Bergamaschi C
    Travel Med Infect Dis; 2021; 44():102179. PubMed ID: 34687870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Avoiding DEET through insect gustatory receptors.
    Lee Y; Kim SH; Montell C
    Neuron; 2010 Aug; 67(4):555-61. PubMed ID: 20797533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of a deet-insensitive mutant of Drosophila melanogaster (Diptera: Drosophilidae).
    Reeder NL; Ganz PJ; Carlson JR; Saunders CW
    J Econ Entomol; 2001 Dec; 94(6):1584-8. PubMed ID: 11777068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative field evaluation of repellent formulations containing deet and IR3535 against mosquitoes in Queensland, Australia.
    Frances SP; MacKenzie DO; Rowcliffe KL; Corcoran SK
    J Am Mosq Control Assoc; 2009 Dec; 25(4):511-3. PubMed ID: 20099600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infodisruption of inducible anti-predator defenses through commercial insect repellents?
    von Elert E; Preuss K; Fink P
    Environ Pollut; 2016 Mar; 210():18-26. PubMed ID: 26708758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of DEET gustation in Drosophila.
    Shrestha B; Lee Y
    Insect Biochem Mol Biol; 2021 Apr; 131():103550. PubMed ID: 33549816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laboratory and field evaluations of the insect repellent 3535 (ethyl butylacetylaminopropionate) and deet against mosquito vectors in Thailand.
    Thavara U; Tawatsin A; Chompoosri J; Suwonkerd W; Chansang UR; Asavadachanukorn P
    J Am Mosq Control Assoc; 2001 Sep; 17(3):190-5. PubMed ID: 14529087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formulations of deet, picaridin, and IR3535 applied to skin repel nymphs of the lone star tick (Acari: Ixodidae) for 12 hours.
    Carroll JF; Benante JP; Kramer M; Lohmeyer KH; Lawrence K
    J Med Entomol; 2010 Jul; 47(4):699-704. PubMed ID: 20695288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor.
    Pellegrino M; Steinbach N; Stensmyr MC; Hansson BS; Vosshall LB
    Nature; 2011 Sep; 478(7370):511-4. PubMed ID: 21937991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavioral and Toxicological Responses of Rhodnius prolixus (Hemiptera: Reduviidae) to the Insect Repellents DEET and IR3535.
    Alzogaray RA
    J Med Entomol; 2016 Mar; 53(2):387-93. PubMed ID: 26637386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aedes aegypti Mosquitoes Use Their Legs to Sense DEET on Contact.
    Dennis EJ; Goldman OV; Vosshall LB
    Curr Biol; 2019 May; 29(9):1551-1556.e5. PubMed ID: 31031114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orthosteric muscarinic receptor activation by the insect repellent IR3535 opens new prospects in insecticide-based vector control.
    Moreau E; Mikulska-Ruminska K; Goulu M; Perrier S; Deshayes C; Stankiewicz M; Apaire-Marchais V; Nowak W; Lapied B
    Sci Rep; 2020 Apr; 10(1):6842. PubMed ID: 32321987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Odorant receptor modulation: ternary paradigm for mode of action of insect repellents.
    Bohbot JD; Dickens JC
    Neuropharmacology; 2012 Apr; 62(5-6):2086-95. PubMed ID: 22269900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurotoxicity and mode of action of N, N-diethyl-meta-toluamide (DEET).
    Swale DR; Sun B; Tong F; Bloomquist JR
    PLoS One; 2014; 9(8):e103713. PubMed ID: 25101788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insect repellents.
    Med Lett Drugs Ther; 2021 Jul; 63(1628):108-112. PubMed ID: 34543260
    [No Abstract]   [Full Text] [Related]  

  • 37. Repellent active ingredients encapsulated in polymeric nanoparticles: potential alternative formulations to control arboviruses.
    Abrantes DC; Rogerio CB; Campos EVR; Germano-Costa T; Vigato AA; Machado IP; Sepulveda AF; Lima R; de Araujo DR; Fraceto LF
    J Nanobiotechnology; 2022 Dec; 20(1):520. PubMed ID: 36496396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Odour receptors and neurons for DEET and new insect repellents.
    Kain P; Boyle SM; Tharadra SK; Guda T; Pham C; Dahanukar A; Ray A
    Nature; 2013 Oct; 502(7472):507-12. PubMed ID: 24089210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput screening method for evaluating spatial repellency and vapour toxicity to mosquitoes.
    Jiang S; Yang L; Bloomquist JR
    Med Vet Entomol; 2019 Sep; 33(3):388-396. PubMed ID: 30907445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxicity, repellency and flushing out in
    Reynoso MMN; Seccacini EA; Calcagno JA; Zerba EN; Alzogaray RA
    PeerJ; 2017; 5():e3292. PubMed ID: 28533956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.