These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34708551)

  • 1. Optical-Field-Driven Electron Tunneling in Metal-Insulator-Metal Nanojunction.
    Zhou S; Guo X; Chen K; Cole MT; Wang X; Li Z; Dai J; Li C; Dai Q
    Adv Sci (Weinh); 2021 Dec; 8(24):e2101572. PubMed ID: 34708551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Electron Tunneling Devices-From Electric-Field Driven to Optical-Field Driven.
    Zhou S; Chen K; Cole MT; Li Z; Li M; Chen J; Lienau C; Li C; Dai Q
    Adv Mater; 2021 Sep; 33(35):e2101449. PubMed ID: 34240495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond Thermal and Nonthermal Hot Electron Tunneling Inside a Photoexcited Tunnel Junction.
    Martín Sabanés N; Krecinic F; Kumagai T; Schulz F; Wolf M; Müller M
    ACS Nano; 2022 Sep; 16(9):14479-14489. PubMed ID: 36027581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal-Insulator Electronics.
    Cui Q; Sakhdari M; Chamlagain B; Chuang HJ; Liu Y; Cheng MM; Zhou Z; Chen PY
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34552-34558. PubMed ID: 27998149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-optical frequency-dependent magnetic switching in metal-insulator-metal stub structures.
    Pae JS; Im SJ; Han YH
    Appl Opt; 2022 Apr; 61(10):2763-2767. PubMed ID: 35471351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
    Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK
    ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable van der Waals Heterostructured Devices with Metal-Insulator Transition.
    Heo J; Jeong H; Cho Y; Lee J; Lee K; Nam S; Lee EK; Lee S; Lee H; Hwang S; Park S
    Nano Lett; 2016 Nov; 16(11):6746-6754. PubMed ID: 27704847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities.
    Caligiuri V; Palei M; Biffi G; Artyukhin S; Krahne R
    Nano Lett; 2019 May; 19(5):3151-3160. PubMed ID: 30920844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waveguide-Integrated Light-Emitting Metal-Insulator-Graphene Tunnel Junctions.
    Liu L; Krasavin AV; Li J; Li L; Yang L; Guo X; Dai D; Zayats AV; Tong L; Wang P
    Nano Lett; 2023 May; 23(9):3731-3738. PubMed ID: 37097286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured ultrafast silicon-tip optical field-emitter arrays.
    Swanwick ME; Keathley PD; Fallahi A; Krogen PR; Laurent G; Moses J; Kärtner FX; Velásquez-García LF
    Nano Lett; 2014 Sep; 14(9):5035-43. PubMed ID: 25075552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band.
    Ozyigit D; Ullah F; Gulsaran A; Bastug Azer B; Shahin A; Musselman K; Bajcsy M; Yavuz M
    Sci Rep; 2023 Nov; 13(1):20733. PubMed ID: 38007559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron-molecule interaction.
    Wen L; Sun Z; Zheng Q; Nan X; Lou Z; Liu Z; Cumming DRS; Li B; Chen Q
    Light Sci Appl; 2023 Mar; 12(1):76. PubMed ID: 36944614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Photon-Induced Tunneling Microscopy.
    Garg M; Martin-Jimenez A; Luo Y; Kern K
    ACS Nano; 2021 Nov; 15(11):18071-18084. PubMed ID: 34723474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Plasmonic Tunnel Gaps for Nanoscale Photoemission Currents by On-Chip Laser Ablation.
    Zimmermann P; Hötger A; Fernandez N; Nolinder A; Müller K; Finley JJ; Holleitner AW
    Nano Lett; 2019 Feb; 19(2):1172-1178. PubMed ID: 30608702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon-chip-based ultrafast optical oscilloscope.
    Foster MA; Salem R; Geraghty DF; Turner-Foster AC; Lipson M; Gaeta AL
    Nature; 2008 Nov; 456(7218):81-4. PubMed ID: 18987739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically Excited Plasmonic Ultraviolet Light Sources.
    Ahmadivand A
    Small; 2021 Jun; 17(24):e2100819. PubMed ID: 33938142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation.
    Ruan Q; Luo W; Xie J; Wang Y; Liu X; Bai Z; Carmalt CJ; Tang J
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8221-8225. PubMed ID: 28520233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoheat-induced Schottky nanojunction and indirect Mott transition in VO₂: photocurrent analysis.
    Kim HT; Kim M; Sohn A; Slusar T; Seo G; Cheong H; Kim DW
    J Phys Condens Matter; 2016 Mar; 28(8):085602. PubMed ID: 26829104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency.
    Li C; Zhou X; Zhai F; Li Z; Yao F; Qiao R; Chen K; Cole MT; Yu D; Sun Z; Liu K; Dai Q
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.