These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 34708739)

  • 1. Inflammatory mediators in diabetic retinopathy: Deriving clinicopathological correlations for potential targeted therapy.
    Sheemar A; Soni D; Takkar B; Basu S; Venkatesh P
    Indian J Ophthalmol; 2021 Nov; 69(11):3035-3049. PubMed ID: 34708739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammation: The Link between Neural and Vascular Impairment in the Diabetic Retina and Therapeutic Implications.
    Ramos H; Hernández C; Simó R; Simó-Servat O
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OMICs approaches-assisted identification of macrophages-derived MIP-1γ as the therapeutic target of botanical products TNTL in diabetic retinopathy.
    Wang N; Zhang C; Xu Y; Li S; Tan HY; Xia W; Feng Y
    Cell Commun Signal; 2019 Jul; 17(1):81. PubMed ID: 31331327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetic Retinopathy: Vascular and Inflammatory Disease.
    Semeraro F; Cancarini A; dell'Omo R; Rezzola S; Romano MR; Costagliola C
    J Diabetes Res; 2015; 2015():582060. PubMed ID: 26137497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of Bushen Yiqi Huoxue prescription and its disassembled prescriptions on a diabetic retinopathy model in Sprague Dawley rats.
    Xie M; Deng L; Yu Y; Xie X; Zhang M
    Biomed Pharmacother; 2021 Jan; 133():110920. PubMed ID: 33232926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between ultrawide-field fluorescence contrast results and white blood cell indexes in diabetic retinopathy.
    Huang L; Li L; Wang M; Zhang D; Song Y
    BMC Ophthalmol; 2022 May; 22(1):231. PubMed ID: 35597915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune Fingerprint in Diabetes: Ocular Surface and Retinal Inflammation.
    Amorim M; Martins B; Fernandes R
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Insights into Pathological Changes in the Diabetic Retina: Implications for Targeting Diabetic Retinopathy.
    Roy S; Kern TS; Song B; Stuebe C
    Am J Pathol; 2017 Jan; 187(1):9-19. PubMed ID: 27846381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of the AIMP1 Pathway in Diabetic Retinopathy: AIMP1-Targeted Intervention Study in Diabetic Retinopathy.
    Zou C; Gu C; Zhao M; Zhu D; Wang N; Yu J; Yao Y; Chen Y; Shi M; Gu Q; Qian Y; Qiu Q; Zheng Z
    Ophthalmic Res; 2020; 63(2):122-132. PubMed ID: 31962335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p75NTR and Its Ligand ProNGF Activate Paracrine Mechanisms Etiological to the Vascular, Inflammatory, and Neurodegenerative Pathologies of Diabetic Retinopathy.
    Barcelona PF; Sitaras N; Galan A; Esquiva G; Jmaeff S; Jian Y; Sarunic MV; Cuenca N; Sapieha P; Saragovi HU
    J Neurosci; 2016 Aug; 36(34):8826-41. PubMed ID: 27559166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the NLRP3 inflammasome in diabetic retinopathy: From pathogenesis to therapeutic strategies.
    Yang Y; Jiang G; Huang R; Liu Y; Chang X; Fu S
    Biochem Pharmacol; 2023 Jun; 212():115569. PubMed ID: 37100255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective Effects of the Bilobalide on Retinal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats.
    Su Q; Dong J; Zhang D; Yang L; Roy R
    Appl Biochem Biotechnol; 2022 Dec; 194(12):6407-6422. PubMed ID: 35932369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response.
    Liao YR; Li ZJ; Zeng P; Lan YQ
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1136-1142. PubMed ID: 28843858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of lipocalin-2-mediated effects in diabetic retinopathy.
    Zhang Y; Song X; Qi T; Zhou X
    Int Ophthalmol; 2024 Feb; 44(1):78. PubMed ID: 38351392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAGE plays key role in diabetic retinopathy: a review.
    Lu Z; Fan B; Li Y; Zhang Y
    Biomed Eng Online; 2023 Dec; 22(1):128. PubMed ID: 38115006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase inhibition in the presence of pro-inflammatory cytokines contribute to the metabolic imbalance of diabetic retinopathy.
    Shivashankar G; Lim JC; Acosta ML
    Exp Eye Res; 2021 Dec; 213():108845. PubMed ID: 34800480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lipopolysaccharides in diabetic retinopathy.
    Qin X; Zou H
    BMC Ophthalmol; 2022 Feb; 22(1):86. PubMed ID: 35193549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Modern concepts of pathogenesis of diabetic retinopathy].
    Filippov VM; Petrachkov DV; Budzinskaya MV; Sidamonidze AL
    Vestn Oftalmol; 2021; 137(5. Vyp. 2):306-313. PubMed ID: 34669342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic protein 2: a potential new player in the pathogenesis of diabetic retinopathy.
    Hussein KA; Choksi K; Akeel S; Ahmad S; Megyerdi S; El-Sherbiny M; Nawaz M; Abu El-Asrar A; Al-Shabrawey M
    Exp Eye Res; 2014 Aug; 125():79-88. PubMed ID: 24910902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UPP mediated Diabetic Retinopathy via ROS/PARP and NF-κB inflammatory factor pathways.
    Luo DW; Zheng Z; Wang H; Fan Y; Chen F; Sun Y; Wang WJ; Sun T; Xu X
    Curr Mol Med; 2015; 15(8):790-9. PubMed ID: 26391545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.