These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34709287)

  • 1. Intermittent dynamics of bubble dissolution due to interfacial growth of fat crystals.
    Liascukiene I; Amselem G; Landoulsi J; Gunes DZ; Baroud CN
    Soft Matter; 2021 Nov; 17(44):10042-10052. PubMed ID: 34709287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arresting dissolution by interfacial rheology design.
    Beltramo PJ; Gupta M; Alicke A; Liascukiene I; Gunes DZ; Baroud CN; Vermant J
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10373-10378. PubMed ID: 28893993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization.
    Gunes DZ; Murith M; Godefroid J; Pelloux C; Deyber H; Schafer O; Breton O
    Langmuir; 2017 Feb; 33(6):1563-1575. PubMed ID: 28139122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.
    Maestro A; Rio E; Drenckhan W; Langevin D; Salonen A
    Soft Matter; 2014 Sep; 10(36):6975-83. PubMed ID: 24832218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of Clay Particle-Coated Microbubbles in Alkanes against Dissolution Induced by Heating.
    Achakulwisut K; Tam C; Huerre A; Sammouti R; Binks BP; Garbin V
    Langmuir; 2017 Apr; 33(15):3809-3817. PubMed ID: 28349689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure, morphology, and lifetime of armored bubbles exposed to surfactants.
    Subramaniam AB; Mejean C; Abkarian M; Stone HA
    Langmuir; 2006 Jul; 22(14):5986-90. PubMed ID: 16800648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore-scale Ostwald ripening of gas bubbles in the presence of oil and water in porous media.
    Singh D; Friis HA; Jettestuen E; Helland JO
    J Colloid Interface Sci; 2023 Oct; 647():331-343. PubMed ID: 37267796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buckling versus Crystal Expulsion Controlled by Deformation Rate of Particle-Coated Air Bubbles in Oil.
    Saha S; Pagaud F; Binks BP; Garbin V
    Langmuir; 2022 Jan; 38(3):1259-1265. PubMed ID: 35023336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Air Bubble Inclusion on Polyurethane Reaction Kinetics.
    Brondi C; Santiago-Calvo M; Di Maio E; Rodríguez-Perez MÁ
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical bubble size distributions in coarsening wet liquid foams.
    Galvani N; Pasquet M; Mukherjee A; Requier A; Cohen-Addad S; Pitois O; Höhler R; Rio E; Salonen A; Durian DJ; Langevin D
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2306551120. PubMed ID: 37708201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooling Particle-Coated Bubbles: Destabilization beyond Dissolution Arrest.
    Poulichet V; Garbin V
    Langmuir; 2015 Nov; 31(44):12035-42. PubMed ID: 26488259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daughter bubble cascades produced by folding of ruptured thin films.
    Bird JC; de Ruiter R; Courbin L; Stone HA
    Nature; 2010 Jun; 465(7299):759-62. PubMed ID: 20535206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid Crystal Foams Generated by Pressure-Driven Microfluidic Devices.
    Shi S; Yokoyama H
    Langmuir; 2015 Apr; 31(15):4429-34. PubMed ID: 25822784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ostwald ripening in multiple-bubble nuclei.
    Watanabe H; Suzuki M; Inaoka H; Ito N
    J Chem Phys; 2014 Dec; 141(23):234703. PubMed ID: 25527953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Egalitarianism among Bubbles in Porous Media: An Ostwald Ripening Derived Anticoarsening Phenomenon.
    Xu K; Bonnecaze R; Balhoff M
    Phys Rev Lett; 2017 Dec; 119(26):264502. PubMed ID: 29328713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarsening foams robustly reach a self-similar growth regime.
    Lambert J; Mokso R; Cantat I; Cloetens P; Glazier JA; Graner F; Delannay R
    Phys Rev Lett; 2010 Jun; 104(24):248304. PubMed ID: 20867343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D simulations of wet foam coarsening evidence a self similar growth regime.
    Thomas GL; Belmonte JM; Graner F; Glazier JA; de Almeida RM
    Colloids Surf A Physicochem Eng Asp; 2015 May; 473():109-114. PubMed ID: 27630449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique properties of bubbles and foam films stabilized by HFBII hydrophobin.
    Basheva ES; Kralchevsky PA; Christov NC; Danov KD; Stoyanov SD; Blijdenstein TB; Kim HJ; Pelan EG; Lips A
    Langmuir; 2011 Mar; 27(6):2382-92. PubMed ID: 21319779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrate Growth on Methane Gas Bubbles in the Presence of Salt.
    Yu LCY; Charlton TB; Aman ZM; Wu DT; Koh CA
    Langmuir; 2020 Jan; 36(1):84-95. PubMed ID: 31820993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.