BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34709608)

  • 21. A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation.
    Vuoristo S; Toivonen S; Weltner J; Mikkola M; Ustinov J; Trokovic R; Palgi J; Lund R; Tuuri T; Otonkoski T
    PLoS One; 2013; 8(10):e76205. PubMed ID: 24098444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells.
    Cuevas-Ocaña S; Yang JY; Aushev M; Schlossmacher G; Bear CE; Hannan NRF; Perkins ND; Rossant J; Wong AP; Gray MA
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic analysis of feeder-free culture system for maintaining naïve-state pluripotency in human pluripotent stem cells.
    Isono W; Kawasaki T; Ichida JK; Nagasaka K; Hiraike O; Umezawa A; Akutsu H
    Stem Cell Investig; 2023; 10():10. PubMed ID: 37155477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings.
    Villa-Diaz LG; Ross AM; Lahann J; Krebsbach PH
    Stem Cells; 2013 Jan; 31(1):1-7. PubMed ID: 23081828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Caesarean scar-derived feeder cells: a novel feeder cell type for culturing human pluripotent stem cells without exogenous basic fibroblast growth factor supplementation.
    Pavarajarn W; Rungsiwiwut R; Numchaisrika P; Virutamasen P; Pruksananonda K
    Reprod Fertil Dev; 2020 Jun; 32(9):822-834. PubMed ID: 32527373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs.
    Bertero A; Pawlowski M; Ortmann D; Snijders K; Yiangou L; Cardoso de Brito M; Brown S; Bernard WG; Cooper JD; Giacomelli E; Gambardella L; Hannan NR; Iyer D; Sampaziotis F; Serrano F; Zonneveld MC; Sinha S; Kotter M; Vallier L
    Development; 2016 Dec; 143(23):4405-4418. PubMed ID: 27899508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled Growth and the Maintenance of Human Pluripotent Stem Cells by Cultivation with Defined Medium on Extracellular Matrix-Coated Micropatterned Dishes.
    Takenaka C; Miyajima H; Yoda Y; Imazato H; Yamamoto T; Gomi S; Ohshima Y; Kagawa K; Sasaki T; Kawamata S
    PLoS One; 2015; 10(6):e0129855. PubMed ID: 26115194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome Engineering for Stem Cell Transplantation.
    Argani H
    Exp Clin Transplant; 2019 Jan; 17(Suppl 1):31-37. PubMed ID: 30777520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types.
    Li K; Ouyang M; Zhan J; Tian R
    Cell Genom; 2023 May; 3(5):100300. PubMed ID: 37228745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells.
    Hayashi Y; Furue MK
    Stem Cells Int; 2016; 2016():5380560. PubMed ID: 27656216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping germ-layer specification preventing genes in hPSCs via genome-scale CRISPR screening.
    Xu X; Du Y; Ma L; Zhang S; Shi L; Chen Z; Zhou Z; Hui Y; Liu Y; Fang Y; Fan B; Liu Z; Li N; Zhou S; Jiang C; Liu L; Zhang X
    iScience; 2021 Jan; 24(1):101926. PubMed ID: 33385119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protocol for the Generation of Human Pluripotent Reporter Cell Lines Using CRISPR/Cas9.
    Zhong A; Li M; Zhou T
    STAR Protoc; 2020 Sep; 1(2):. PubMed ID: 33073252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling transcription in human pluripotent stem cells using CRISPR-effectors.
    Genga RM; Kearns NA; Maehr R
    Methods; 2016 May; 101():36-42. PubMed ID: 26525193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. α-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal.
    Laperle A; Hsiao C; Lampe M; Mortier J; Saha K; Palecek SP; Masters KS
    Stem Cell Reports; 2015 Aug; 5(2):195-206. PubMed ID: 26235893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells.
    Ma X; Chen X; Jin Y; Ge W; Wang W; Kong L; Ji J; Guo X; Huang J; Feng XH; Fu J; Zhu S
    Nat Commun; 2018 Apr; 9(1):1303. PubMed ID: 29610531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency.
    Li QV; Rosen BP; Huangfu D
    Wiley Interdiscip Rev Syst Biol Med; 2020 Jan; 12(1):e1464. PubMed ID: 31407519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of universal and hypoimmunogenic human pluripotent stem cells.
    Ye Q; Sung TC; Yang JM; Ling QD; He Y; Higuchi A
    Cell Prolif; 2020 Dec; 53(12):e12946. PubMed ID: 33174655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases.
    Yang D; Scavuzzo MA; Chmielowiec J; Sharp R; Bajic A; Borowiak M
    Sci Rep; 2016 Feb; 6():21264. PubMed ID: 26887909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
    Hendriks WT; Jiang X; Daheron L; Cowan CA
    Curr Protoc Stem Cell Biol; 2015 Aug; 34():5B.3.1-5B.3.25. PubMed ID: 26237572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.