These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34709614)

  • 1. New Method for Genome-Scale Functional Genomic Study in Bacteria with Superior Performance: CRISPR Interference Screen.
    Liao X; Xing XH; Zhang C
    Methods Mol Biol; 2022; 2377():123-141. PubMed ID: 34709614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance.
    Wang T; Guan C; Guo J; Liu B; Wu Y; Xie Z; Zhang C; Xing XH
    Nat Commun; 2018 Jun; 9(1):2475. PubMed ID: 29946130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pooled CRISPR Screens in Drosophila Cells.
    Viswanatha R; Brathwaite R; Hu Y; Li Z; Rodiger J; Merckaert P; Chung V; Mohr SE; Perrimon N
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e111. PubMed ID: 31763777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPRi-seq for genome-wide fitness quantification in bacteria.
    de Bakker V; Liu X; Bravo AM; Veening JW
    Nat Protoc; 2022 Feb; 17(2):252-281. PubMed ID: 34997243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotype from Phenotype: Using CRISPR Screens to Dissect Lymphoma Biology.
    Bolomsky A; Choi J; Phelan JD
    Methods Mol Biol; 2025; 2865():241-257. PubMed ID: 39424727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-Generation Sequencing of Genome-Wide CRISPR Screens.
    Yau EH; Rana TM
    Methods Mol Biol; 2018; 1712():203-216. PubMed ID: 29224076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guide RNA library-based CRISPR screens in plants: opportunities and challenges.
    Pan C; Li G; Bandyopadhyay A; Qi Y
    Curr Opin Biotechnol; 2023 Feb; 79():102883. PubMed ID: 36603502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries.
    O'Shea P; Wildenhain J; Leveridge M; Revankar C; Yang JP; Bradley J; Firth M; Pilling J; Piper D; Chesnut J; Isherwood B
    SLAS Discov; 2020 Jul; 25(6):618-633. PubMed ID: 32476557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide CRISPR-Cas9 screening in mammalian cells.
    Yu JSL; Yusa K
    Methods; 2019 Jul; 164-165():29-35. PubMed ID: 31034882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocols for CRISPR-Cas9 Screening in Lymphoma Cell Lines.
    Webster DE; Roulland S; Phelan JD
    Methods Mol Biol; 2019; 1956():337-350. PubMed ID: 30779043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-Based Gene Dropout Screens.
    Wu K; Malek SN
    Methods Mol Biol; 2019; 1881():185-200. PubMed ID: 30350207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rise and future of CRISPR-based approaches for high-throughput genomics.
    Vercauteren S; Fiesack S; Maroc L; Verstraeten N; Dewachter L; Michiels J; Vonesch SC
    FEMS Microbiol Rev; 2024 Sep; 48(5):. PubMed ID: 39085047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome-scale CRISPR interference guide library enables comprehensive phenotypic profiling in yeast.
    McGlincy NJ; Meacham ZA; Reynaud KK; Muller R; Baum R; Ingolia NT
    BMC Genomics; 2021 Mar; 22(1):205. PubMed ID: 33757429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal LentiCRISPR-Based System for Sequential CRISPR/Cas9 Screens.
    Hutcheson RL; Hayes M; Sugden B
    ACS Synth Biol; 2022 Jul; 11(7):2259-2266. PubMed ID: 35767740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced gene templates for supervised analysis of scale-limited CRISPR-Cas9 fitness screens.
    Vinceti A; Perron U; Trastulla L; Iorio F
    Cell Rep; 2022 Jul; 40(4):111145. PubMed ID: 35905712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells.
    Zhou Y; Fu Q; Shi H; Zhou G
    Methods Mol Biol; 2022; 2549():233-257. PubMed ID: 35347694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.