These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34709781)

  • 1. Atomically Thin Materials for Next-Generation Rechargeable Batteries.
    Yuan D; Dou Y; Wu Z; Tian Y; Ye KH; Lin Z; Dou SX; Zhang S
    Chem Rev; 2022 Jan; 122(1):957-999. PubMed ID: 34709781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MXenes for Rechargeable Batteries Beyond the Lithium-Ion.
    Ming F; Liang H; Huang G; Bayhan Z; Alshareef HN
    Adv Mater; 2021 Jan; 33(1):e2004039. PubMed ID: 33217103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.
    Mei J; Liao T; Kou L; Sun Z
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28394441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries.
    Wei C; Tan L; Zhang Y; Zhang K; Xi B; Xiong S; Feng J; Qian Y
    ACS Nano; 2021 Aug; 15(8):12741-12767. PubMed ID: 34351748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances of Two-Dimensional (2 D) MXenes and Phosphorene for High-Performance Rechargeable Batteries.
    Li J; Guo C; Li CM
    ChemSusChem; 2020 Mar; 13(6):1047-1070. PubMed ID: 32073208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries.
    Hoang Huy VP; Ahn YN; Hur J
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34201136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries.
    Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX
    ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging Layered Metallic Vanadium Disulfide for Rechargeable Metal-Ion Batteries: Progress and Opportunities.
    Li W; Kheimeh Sari HM; Li X
    ChemSusChem; 2020 Mar; 13(6):1172-1202. PubMed ID: 31777162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation engineering of 2D MXene-based compounds for metal-ion batteries.
    Yu Y; Zhou J; Sun Z
    Nanoscale; 2019 Dec; 11(48):23092-23104. PubMed ID: 31782465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application.
    Sang P; Chen Q; Wang DY; Guo W; Fu Y
    Chem Rev; 2023 Feb; ():. PubMed ID: 36757873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage.
    Yun Q; Li L; Hu Z; Lu Q; Chen B; Zhang H
    Adv Mater; 2020 Jan; 32(1):e1903826. PubMed ID: 31566269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries.
    Zhang L; Zhang X; Han D; Zhai L; Mi L
    Small Methods; 2023 Nov; 7(11):e2300687. PubMed ID: 37568245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review.
    Adekoya D; Qian S; Gu X; Wen W; Li D; Ma J; Zhang S
    Nanomicro Lett; 2020 Oct; 13(1):13. PubMed ID: 34138201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Search for New Anode Materials for High Performance Li-Ion Batteries.
    Roy K; Banerjee A; Ogale S
    ACS Appl Mater Interfaces; 2022 May; 14(18):20326-20348. PubMed ID: 35413183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Water Purification and Antibacterial Applications.
    Mahar I; Memon FH; Lee JW; Kim KH; Ahmed R; Soomro F; Rehman F; Memon AA; Thebo KH; Choi KH
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Supported Atomically Dispersed Metals as Bifunctional Catalysts for Next-Generation Batteries Based on Conversion Reactions.
    Chen B; Zhong X; Zhou G; Zhao N; Cheng HM
    Adv Mater; 2022 Feb; 34(5):e2105812. PubMed ID: 34677873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries.
    Cui S; Miao W; Peng H; Ma G; Lei Z; Zhu L; Xu Y
    Chemistry; 2024 Feb; 30(12):e202303320. PubMed ID: 38126628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries.
    Ye Z; Jiang Y; Li L; Wu F; Chen R
    Nanomicro Lett; 2021 Oct; 13(1):203. PubMed ID: 34611765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.